
The Research and Implementation of Mongolian Extension

to Swing and Android UI Components

ZHANG Zhongwei, LIN Min

College of Computer and Information Engineering , Inner Mongolia Normal University, Hohhot, China

joyzzw@yeah.net, cieclm@imnu.edu.cn

Abstract - Since the traditional display layout of Mongolian

has its particularity and the relatively lagging of Mongolian character

set included in the international coding standard, current mainstream

development platforms have neither a completed set of UI

components support Mongolian features, nor any well-developed

Mongolian UI components extension method. This paper find out a

reasonable UI components extension method support Mongolian

features by study the architecture of parsing Java Swing and Android

UI components. In addition, we use this method extend the

commonly used Swing and Android UI components. Results show

that the extended components have the display and edit functions

support the international coding standard and conform to Mongolian

features, consequently, it can meet the need of Mongolian

application development over the Internet and mobile platforms.

Index Terms - Swing Components, Android UI, Component

Extension, Mongoliant

1. Introduction

Mongolian information processing technology started

earlier, and have made certain progress in both theory and

application level. However, due to the Mongolian characters

haven’t enter the era of international standard codes until 2000,

is lagging behind; the layout of traditional Mongolian has its

particularity that it requires input from top to bottom and from

left to right; and the traditional Mongolian used mainly in

Inner Mongolia with geographic limited[1]. These peculiarities

result in the UI components of current mainstream

development platform support poorly for Mongolian, which

seriously affect the development and application of Mongolian

software. In addition, although smart phones and mobile

devices become more and more popular, the UI components of

current mobile platform support very inadequately for

Mongolian, Mongolian application software is very rare,

which bring a very negative impact on Mongolian users in the

internet era and adversely affect Mongolian culture heritage.

Swing is one of the mainstream UI components in Java

technology, with the benefits of mature technology, complete

function, and widely used[2]. Develop a set of Swing-based

Mongolian Java GUI components will help to reduce

Mongolian application development costs and improve the

efficiency of software development. Android is a mainstream

mobile development platform launched by Google company.

Android UI system lies in application framework layer, which

use Java development language entirely[3-5]. Therefore, the

extension method to Java Swing components also applies to

Android UI components.

2. Related Technologies Overview

A. Swing architecture

Swing is based on something called a "modified MVC

(model-view-controller) architecture". Based on this

architecture, each swing component contains a model and an

UI delegate. UI delegate is responsible for painting screen and

handling GUI events. Model is in charge of maintaining

information or states of the component. Standard Swing

components include at least three basic objects [2]: Component,

Model and UI Delegate.

The component object is the center of Swing components,

Model and UI Delegate are integral part of it. It is responsible

for providing some of the APIs and thus coordinates and

controls Model, UI Delegate and Renderer object.

The model object is responsible for storing the state of the

component and is divided into two categories: GUI-state

models and application-data models[6]. GUI state models are

interfaces that define the visual status of a component; An

application-data model is an interface that represents some

quantifiable data that has meaning primarily in the context of

the application. The component object through its set/get

methods to access or modify the Model object. The Model

object also provides some methods to get/set data and respond

to events.

UI Delegate is a class object which has both the view and

controller roles. UI Delegate responsible for implementing the

component's appearance rendering and event response which is

provided by the current LAF packages can be dynamically

modified. A look-and-feel implementation provides concrete

subclasses for each abstract plaf UI class. The UI delegate is

created in the component's constructor and is accessible as a

JavaBeans bound property on the component. A view object

will be created according to the component's type and the

information of element object when the UI delegate is created.

This view object is responsible for displaying and editing the

text of component.

B. Principle of Swing component's text rendering and text

editing

Swing using the MVC architecture separates data and view.

For those text related component, their text data is hold in the

corresponding Document object, which is to say, Document is

the concrete implementation of the model role played in Swing

MVC architecture. To display the text of the component, UI

Delegate of that component firstly get the text data from

Document object, then draw the text data onto the screen using

the specific styles provided by UI Delegate. Java programs

International Conference on Computer, Communications and Information Technology (CCIT 2014)

© 2014. The authors - Published by Atlantis Press 29

must use this Graphics object or one derived from it to render

output. When the component text has been modified, what is

really changed underground is Document content[7].

The text component's editing function is achieved through

the event listeners. There are two main event listener interfaces

which are associated with the text editing function[8-9]: one is

Undoable Edit Listener interface, and other is Document

Listener interface. The Undoable Edit Listener interface

monitor UndoableEvent event and records all operations of the

text component in order to assist in the implementation of

undo and redo commands. The Document Listener interface

monitor DocumentEvent event (such as type characters, delete

characters, cut, paste, etc.), and triggers the text component's

repaint method to update the display of text. With these two

interfaces, text components can be achieved text editing

functions.

C. The Mongolian international standard encode and

methods to map nominal characters to displayed

characters

The Mongolian international standard encoding has been

accepted by Unicode technology committee. In the standard of

ISO/IEC 10646, 176 code positions are provided for

Mongolian, in which only 35 are occupied by traditional

Mongolian characters [10-12]. In this standard, only some

abstract Mongolian characters are stored according to

Mongolian pronunciation, and these are called nominal

characters. Different from ordinary pinyin words, one

Mongolian character’s shape, which is called displayed

characters, will change with its position in a word and the

word’s part of speech and so on. Because no Mongolian

displayed characters are stored in ISO/IEC 10646 standard,

when displaying Mongolian, the nominal characters must

firstly be mapped to their correct displayed characters

according to their contexts.

Nowadays, there are two methods to map nominal

characters to displayed characters [7]: one is to store displayed

characters and their customized codes, which normally occupy

the private area PUA, in the TrueType font, then, according to

the features of Mongolian, write a mapping program to analyze

Mongolian characters’ contexts in order to get their correct

displayed characters’ customized codes, and finally access the

glyph data in the TrueType font. The advantage of this method

is not depending on operation system, and the disadvantage of

it has to design a special algorithm on the layer of application

program to implement the rule of mapping nominal characters

to displayed characters, which is lowly general. Another way

is by using the OpenType font technology to store displayed

characters and the rule of mapping in the font, and to analyze

these rules by special modules of the operation system in order

to get the correct displayed characters’ ID (glyphID). The

advantage of this method is not requiring the support of a

mapping program in application layer and is highly general,

but the disadvantage is that some system do not support the

analyzing of OpenType font untill now, which makes this

method hard to be applied across platforms. This paper used

the first method.

3. The Mongolian Extension Method of the Swing

Components

A. The reason why Swing components do not support

Mongolian text display

Ordinary Swing components can not support the

Mongolian text which is reflected in three aspects:

First, Swing components can not display Chinese and

Mongolian text at the same time that when the text contain

both Chinese and Mongolian characters, one of the characters

will not be displayed. Figure 1 is a JTextArea Component test

case, the first JTextArea component uses the default font and

the output show that Chinese characters are displayed correctly

in that, whereas the Mongolian ones don't; Second JTextArea

component uses the Mongolian White font and the output

show that Mongolian characters are displayed correctly in that,

whereas the Chinese ones don't. The fundamental reason for

this result is that: Swing components use this Graphics object

or one derived from it to render output. Graphics object at a

time can be set only one font. When the font of Graphics

object is set to Chinese font(the default font), Swing

components can not display Mongolian characters correctly.

The reason is that Mongolian characters can not find its

Corresponding glyph in the Chinese font. Similarly, when the

font of Graphics object is set to Mongolian font, Chinese

characters will not be displayed correctly.

Second, even if the font of Graphics object is set to

Mongolian font, Swing components' display of the Mongolian

characters is also wrong. Because the Mongolian characters to

be displayed are no be converted from nominal characters to

displayed characters, so the display is just the glyph of the

Mongolian nominal characters. For example, the second test

output in Figure 1. Swing components' runtime platform is

JVM which does not support OpenType font until now.

Meanwhile there is not a mapping program to convert

Mongolian nominal characters to displayed characters. So the

Mongolian characters can not be displayed correctly.

Third, Swing components do not support the Mongolian

characters to be displayed and edited vertically. Since the

layout of Mongolian text has its particularity that it requires

input and display from top to bottom and from left to right.

However there is no specific interface to support the Swing

components to input and display text vertically. So this is an

aspect that Swing components can not support Mongolian text.

Fig 1. JTextArea component test case

B. Extend the Swing components

Against the three aspects of the Swing components which

are responsible for the incorrectly displaying of Mongolian, we

30

also extend the Swing components from three aspects. These

three aspects seem totally independent, however, we find that

they are connected and related internally when implementing

of the technology details. For example, When we extend the

Swing components' capabilities to make it display and edit

both Chinese and Mongolian text at the same time, we both

must consider both the problem of Graphics object' font and

the problem of Mongolian deformation display.

1) Extend the Swing components to display both the

Chinese and Mongolian text at the same time

By exploring and analyzing of the source code, we find

that Swing components needs to engage multiple level

methods invocation chain to render the text correctly. However,

many work flows share a common procedure at the last part of

that invocation chain, so we could display the Chinese and

Mongolian text at the same time, side by side, through the

extending to the commonly shared procedure. The rendering

process after extending is shown in Figure 2.

Note: L is the length of character array

Using Mongolian deformation display

rule function to convert the text to be

drawn and placed it in the character array

i<L

Initialize the loop variable i=0

Set the drawable parameter canDisplay=ture

Current character is a tab

canDisplay=true

Draw text using the alternate font

i++

Draw the remaining data

Return the x coordinate after

finished draw

Draw text and tabs

Draw text and line breaks

Draw text using the

default font

no

yes

no

no

no

Create an alternate font, set Mongolian

font as the default font and Chinese font

as the alternate font

Text drawing initialization parameters:

default font, text drawing coordinates, etc

Current character is a line break

yes

yes

yes

Fig 2. the rendering process after extending

Extension is mainly manifested in two aspects: First,

before rendering the characters, convert Mongolian nominal

characters to displayed characters with the mapping

program(this program will be explained later); Second, set an

alternative font and make sure the default font is Mongolian

font, alternate font is a Chinese font. When the component

renders its text, it must use the canDisplay() method of the

default font object to determine whether the current character

can be displayed, at first. If the current character can be

displayed then render this character with the default font object,

otherwise render this character with the alternative font.

Through this extension the function of displaying Chinese and

Mongolian text at the same time can be achieved.

2) Mapping Mongolian nominal characters to displayed

characters

So far, JVM can not parse the rules in layout table which is

part of OpenType font. In order to implement the application

across platform, this paper chooses the first method mentioned

above to map nominal characters to displaying characters.

Concrete steps are: First of all to establish a special OpenType

font. This font, besides the rules of mapping Mongolian

nominal characters to displayed characters, also has all of the

Mongolian displayed characters' glyph. These glyph data are

encoded to Unicode's private area (PUA). Then this font can

be used at any system platform, on matter whether the

platform supported the OpenType font or not. Secondly, write

a mapping program with Java language to analyze Mongolian

character’s context in order to get the correct displayed

character. When the text needs to be displayed, we use this

mapping program to get correct displayed characters, and

finally access the glyph data in the special OpenType font.

Then the Mongolian text will be displayed in correctly.

3) Extend the Swing components to display and edit the

Mongolian characters vertically

Swing components edit and display all content via

EditorKit and EditorKit displays text using view class. So for,

we focus on extending the view class to implement displaying

text vertically. In the view class, most of the methods will use

a lot of coordinate and size parameters, when they display text.

The horizontal and vertical positions in displaying from top to

bottom and left to right are symmetrical about the line y=x. So

when we extend the method of the view class, we just need to

swap and appropriate adjustment some parameters which are

associated with displaying and editing text.

There are four main steps to achieve the goal of displaying

and editing text vertically: Step 1: extend the setSize() method

of the view class, as well as the methods related to component

layout. In this step we will swap and store the width and height

of the component; Step 2: extend the paint() method and the

associated methods. In this step we should use the Graphics2D

object's rotate() method to rotate the text vertically and modify

some positional parameters associated with the text displaying;

Step 3: extend the getNextVisualPositionFrom() method to

change navigation by keys strategy. since the vertical text is

displayed from top to bottom and from left to right, so left and

right("←" and "→") arrows should go to previous and next

row, up and down("↑" and "↓") arrows accordingly will

move caret to previous or next char; Step 4: extend the

modelToView() and ViewToModel() method to display the

caret horizontally. Real caret rectangle for each caret position

is returned by modelToView() method. We extend the method

and change shape returned by super. Then we modify

viewToModel() method changing coordinates to allow proper

caret setting in a point which was clicked by user. After the

extension by the above four steps, the text can be displayed

and edited vertically.

We take the PlainView class as the example, and to

describe the specific content to be extended of each method.

PlainView's extension step is shown in Table 1.

31

Table 1 Mongolian vertically display and edit extension step of javax.swing.text.PlainView class

4. Results

Using the extension method as the paper find out, we have

efficiently achieved the extension of JLabel, JTextFiled,

JTextArea components of Swing. The extended components

can not only achieve the goal to correctly display Chinese and

Mongolian text at the same time, but also can display and edit

the text vertically. The result is shown in the left of figure 3.

Fig 3. the extended Swing and Android UI components

Using the same extension method, we have also achieved the

extension of TextView and EditText components of Android

platform. The extended components can not only achieve the

goal to correctly display Chinese and Mongolian text at the

same time, but also can diplay and edit the text vertically. The

result is shown in the right of figure 3.

5. Conclusion

The paper researches mainly on the Mongolian extension

method of the Swing and Android UI components, thus

finding out an reasonable extension method, and actually

achieving the goal to extend JLabel, JTextFiled, JTextArea

components of Swing and TextView, EditText components of

Android based on the method, the test results show that the

extension method is stable and efficient. The extended

components can achieve the goal to correctly display Chinese

and Mongolian text at the same time but also can display and

edit the text vertically, the implementation of these

components can cut down the development cost of the PC and

Android Mongolian software interface based on JAVA, thus

improving the development efficiency of the software, and

using the components at the same time can also make the

former software client based on Swing and software interface

based on Android completely show Mongolian style, thus it

can meet the need of Mongolian application development over

the Internet and mobile platforms.

References

[1] Amy Fowler. Painting in AWT and Swing. (2003)[2013-05].
Online-Dokument:

http://www.oracle.com/technetwork/java/painting-140037.html.

[2] Loy M, Eckstein R, Wood D, et al. Java Swing.[S.l.]: O'Reilly, 2012:
13-16.

[3] Gong Lei, Zhou Cong. Design and Research of Mobile Terminal

Application Program Based on Android. Computer and Modernization:
2008, (8): 85-89.

[4] Ding Ershuai. Android environment AppWidget Architecture. Xi An

University of Electronic Science and Technology, 2011.
[5] Luo Shuyuan. Android Widget System Design and Implementation.

Beijing Jiaotong University, 2012.

[6] Dai Xin. Developement of Java Swing Program. Software Guide: 2007,
(9): 138-139.

[7] Yao Yandong, Wu Jian, Sun Yufang, etc.. Research and Realization of

Tranditional Mongolian Deformation and Displaying Mechanism.
Journal of Chinese Information Processing: 2005, 18(5): 84-89.

[8] ITEEDU. Event Dealing of JTextArea (2012)[2013-05].

http://www.iteedu.com/plang/java/jtswingchxshj/49.php.
[9] Hu Jiafen. Study on the Multi-Thread Mechanism of Swing Graphic

User Interface. Computer Konwledge and Technology, 2012 (31):

7481-7482.
[10] International Standard ISO/IEC 10646-1 Second Edition. Information

technology-Universal Multiple Octet Coded Character Set(UCS), 2000.

[11] Que Jingzhabu. Mongolian Encoding. Hohhot: Inner Mongolia
University Press, 2000.

[12] Gong Zheng. Research of Mongolian Encoding Transforming. Hohhot:
Inner Mongolia, 2007.

Step Extension Method Extension Content

1

setSize(float, float)
Assign width, height to height and width, the two properties of View class, respectively, implement

the exchange.

getMaximumSpan(int) Set judgment conditions, case View.X_AXIS: getMinimumSpan(View.Y_AXIS); case View.Y_AXIS:

getMinimumSpan(View.X_AXIS); getMinimumSpan(int)

2

paint(Graphics, Shape)

Rotate Graphics by 90 degrees to make the characters display rotate 90 degrees;

Exchange the x, y coordinates of text outsourcing rectangular frame alloc as well as width and height;
Exchange blank above linesAbove and blank below linesBelow;

Text drawing area lineArea = lineToRect(a, linesAbove), the second parameter changed to linesBelow;

Initialize y = lineArea.y - fontHeight + metrics.getAscent()+2;
Initialize line with linesBelow in statement for (int line = linesAbove;);

Change y += fontHeight in the loop to y -= fontHeight;

damageLineRange(int, int, Shape, Component)
Implement the exchange of x, y coordinates and the exchange of width and height both in Rectangle

area0 and Rectangle area1;

3
getNextVisualPositionFrom(int, Bias, Shape,

int, Bias[])

NORTH changed to WEST; SOUTH changed to EAST; EAST changed to SOUTH; WEST changed to

NORTH; Swap the execute statements of case EAST: and case WEST:;

4

modelToView(int, Shape, Bias)
alloc = newRectangle((Rectangle)a); Exchange the x, y coordinates of alloc, exchange width and
height;

modelToView(int, Bias, int, Bias, Shape)
To rectangle r0:r0.x = r0.y; r0.y = -tmp - r0.width/2; Exchange width and height of r0. Make the same
modifications to rectangle r1;

ViewToModel(float, float, Shape, Bias[]) Exchange the x, y coordinates of rectangle alloc, exchange width and height; Exchange int x and int y;

32

