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Abstract—Nowadays, the ongoing progress of networking in 
essential utilities such as the Internet, the WWW, transportation 
networks, electrical power grid networks, etc., brings significant 
benefits to the quality of our life. However, networked systems 
hold a certain danger that a failure of a single node in the system 
may diffuse to all other nodes. This chain of failure is widely 
known as cascading failure. Examples of cascading failure 
include disease epidemics, traffic congestion, electrical power 
system blackouts, and so on. In these systems, if external shocks 
or excess loads at some nodes are propagated to other connected 
nodes due to failure, the domino effects often come with 
disastrous consequences. Thus, how to prevent cascading failures 
in complex networks becomes an important emergent issue. In 
this paper, we consider an overload-based cascading failure 
model and design a robust network structure against this type of 
cascading failure. Numerical simulations show that the proposed 
network, which consists of a complete cluster of connected hub 
nodes, and periphery nodes connecting one of hub nodes in the 
cluster, is least susceptible to cascading failures compared with 
other types of networks. 
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I. INTRODUCTION 

Many complex systems in nature and society can be 
described by networks, including social and biological systems 
such as the Internet, the WWW, computer networks, electrical 
power grid networks, metabolic networks, and so on. In recent 
years, complex network research has attracted a lot of attention 
and scientists have made major advances in understanding the 
topological properties of networks. Interestingly, evidences 
have been demonstrated that most of nature networks share 
some important topological similarities, e.g. the small-world 
and scale-free property. Moreover, a vast number of research 
have clarified that certain topological properties of complex 
networks have strong impacts on their stability. Here, 
network’s stability refers to the malfunction avoiding ability of 
a network when a fraction of its elements are damaged. 
Previous works have demonstrated that the heterogeneity of a 
network induces its robustness against errors. That is, scale-free 
networks with degree distribution heterogeneity might be 
strong to errors but at the same time, fragile to malicious 
attacks. On the other hand, homogeneous networks might be 
robust against attacks but vulnerable to random failures. In our 
daily life, many important real networks bear the "robust yet 
fragile" property [1]. 

While the ongoing progress of networking in essential 
utilities brings significant benefits to the quality of our life, 
networked systems often hold a certain danger that a failure of 

only single element in the system can diffuse to other elements. 
This kind of failure is widely recognized as cascading failure in 
which, though errors or intentional attacks emerge locally, the 
damage is propagated largely, even resulting in global collapse. 
Recently, many scholars have investigated cascading failures 
due to overload mechanism. Mechanism behind this type of 
cascade is explained as follows: there is a critical load at which 
risk sharply increases toward a threshold for cascading failure. 
If external shocks or excess loads at some nodes are propagated 
to other connected nodes due to failure, the domino effects 
often come with disastrous consequences. In traffic of electrical 
systems, a high load on some components cause failures, such 
as traffic jams or electrical line failures, with the potential to 
sever links or removes nodes from the network. A number of 
important aspects of this type of cascading failures in complex 
networks have been discussed in the literature and many 
valuable results have been found. 

When we may model and understand the behaviour of 
cascading failures, the robustness of a network against 
cascading failures due to intentional attacks has become a topic 
of recent interest. While new forms of attacks are developed 
every day to compromise essential infrastructures, service 
providers are also expected to develop defense strategies to 
mitigate the risk of extreme failures. In this context, tools for 
network science have been used to evaluate network robustness 
and propose resilient topologies against attacks. In addition, a 
number of aspects of cascading failures have been discussed in 
some literature, including the cascade control and defense 
strategy. A lot of authors have considered both (i): active 
approaches, in which they try to mitigate cascade damage while 
cascade is in progress, and (ii): topological approaches, in 
which they try to design robust network structure against 
cascade. When topological robustness is possible, it has more 
advantages over active robustness because of its simplicity and 
efficiency.  

In this paper, we present a novel network design and show 
that the introduced network structure is least susceptible against 
overload based cascading failures. In such cascading failure, 
the flow diffuse on the shortest path, every pairs of nodes 
should select hub nodes as relaying points to decrease the 
average path length of the network, thus increase its 
communication efficiency. Then the failures of hub nodes will 
cause the major redistribution of flows. To design robust 
network against overflow based cascading failure, it is intuitive 
idea that the homogeneous network is the best, because all 
nodes have sufficient alternative adjacent nodes after some 
nodes may fail. However, the homogeneous network has side 
effects for the network performance that the average shortest 
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path length between nodes prone to be large due to the lack of 
hub nodes. In this paper, the proposed network consists of hub 
nodes and periphery nodes. Hubs compose complete sub-graph 
to prevent the disconnection when some important nodes fail, 
and periphery nodes, which are belongs to singe hub nodes, are 
useful to reduce the total load of the system. By numerical 
simulations, we show that the introduced network is more 
robust and stable than other types of network. 

We organize our paper as follows: we give the brief 
instruction of an overload based cascading model in section 2, 
introduce a heuristic method for designing the least susceptible 
networks against cascading failures in section 3, show the 
performance of the introduced network by numerical 
simulations in section 4 and finally, summary the paper in 
section 5. 

II. AN OVERLOAD-BASED CASCADING FAILURE MODEL 

A. Overload-based Model 

In this section, we investigate some insights about the 
situations of cascading failures due to overload model. This 
overload model considers loads of physical quantities such as 
load of TCP and UDP packets in the Internet or the current load 
in the power grid systems. Cascading failures triggered by an 
initial failure of a single node due to overload are sometimes 
occurred and propagated to very large damage such as packet 
congestion in the Internet, chain reaction bankruptcies, 
blackouts of power grid networks, and so on. 

Motter and Lai [2] were the first to address this type of 
cascading failure in distributed network. Their model is 
generally applicable to realistic networks, yet simple enough to 
support tractable analysis, and it consists of several key 
elements: 

(i) The traffic is simulated by the exchange of one unit of 
the relevant quantity (information, energy, etc.) between every 
pair of nodes along the shortest-hop path connecting them. The 
load placed on a node is considered as the betweenness 
centrality of a node which is equivalent to the total number of 
shortest-hop paths passing through the node. 

(ii) The capacity of a node is defined as the maximum load 
that it can handle. For simplicity, the capacity Ci of node i is 
assumed to be linearly proportional to its initial load Li 

 ii LC )1( α+=  (1) 

where, � is the tolerance parameter, indicating the maximum 
load that a node can handle. Here, the tolerance parameter � 
also implies the budget of constructing network or allocating 
resources. The most effective and simple way to prevent 
cascade is to increase this tolerance parameter � as much as 
possible, meaning that all nodes have sufficient resources to 
prevent failure due to overload. But � is often limited by cost. 
Therefore, to validate the robustness of our proposed network 
structure, we assume that the tolerance parameter � is small 
and the maximum value of the tolerance parameter is �=1. If 
the load of a node exceeds its capacity, it will be failed, 
otherwise, it will be safe 
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Cascading failure is then a result of load redistribution 
when some nodes initially fail. When all nodes are operational, 
network operates steadily because there is no overload at each 
node. However, the removal of a node when it failed, will 
naturally cause a redistribution of the shortest-hop paths. And 
this will generally increase load at some other nodes. If the 
redistributed load exceeds the given capacity of any node, it 
will fail, triggering a new redistribution, and possible 
subsequent cascading failures. Eventually, the failure will stop, 
when all remaining nodes can handle their load. 

B. Robustness Metric 

In complex network research, the evaluation of robustness 
focuses on some generic topological metrics of network such 
as, size of the Largest Connected Component (LCC)-in which 
there is a path between any pair of nodes in a network-, the 
average shortest path length in the LCC, the efficiency of the 
LCC, etc. Besides considering properties of the LCC, some 
other metrics are also considered, e.g. the average avalanche 
size, the avalanche size distribution, the critical point of phase 
transition from absorbing state to cascading state and so on. 
Since the connectivity of the system is important and 
topological connectivity is often measured by the size of the 
LCC, in this paper, we quantify the damage caused by a 
cascading failure by G, which is the ratio of the number of 
functional nodes in the LCC after and before cascading event 
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where N' and N is the size of the LCC of network after and 
before cascading failure, respectively. Evidently, N is the size 
of initial network. A network shows its integrity if G≈1, i.e. 
there is no cascade in network and all nodes are connected, 
and G≈0, meaning that a network disconnects in several small 
sub-networks. Thus, the relative size of G then represents the 
robustness of a network against cascading failures. 

III.  A NETWORK DESIGN MODEL OF CORE-PERIPHERY 

STRUCTURE 

A. Core-Periphery Network 

Generally, based on the degree centrality, we can classify 
nodes in a network into two categories: hub nodes and 
periphery nodes (we call hubs and peripheries in the following).  

In complex networked system, hubs play an important role 
because they connect other nodes and guarantee the 
connectivity of the network. In overload models, hubs are 
usually selected as a pathway to reduce the average shortest 
hop paths length between every pairs of nodes, then increase 
the efficiency of network. Thus, hubs might carry large amount 
of flows as relaying points. Normally, the failure of hubs 
causes major changes in the network connectivity and the 
balance of loads. That is the reason why the existence of hubs 
becomes the weak point of the network and can be targets of 
malicious attacks. The connection between hub nodes then, 

274



plays a role key in preserving the connectivity of  the whole 
network when some hubs may fail. 

Motter [8] introduced and investigated a costless strategy of 
defense based on a selective further removal of nodes and 
edges, right after the initial attack or failure. Their main result 
is, the size of the cascade can be drastically reduced with the 
Intentional Removals of nodes having small load and edges 
having large excess of load. Even though any removal always 
increases the immediate damage on the network, the resulting 
G is in this case significantly larger as compared to the case 
without defense, because these Intentional Removals strongly 
suppress the propagation of the cascade. Based on this study, 
we now understand the role of peripheries with small degree is 
that, they mainly contribute to generate load rather than to 
transmit information, then the removal or shutdown of one of 
them may reduce the total load of the system, and then support 
the overload avoiding of other nodes in the network. 

We now know that the connection between hubs and the 
shutdown of peripheries are important in terms of network 
robustness against cascading failures. We now introduce a 
heuristic method to build least susceptible network to overload 
cascading failures in the following sub-section, in which the 
hub-hub and the hub-periphery connection are implemented. 

B. Network Design Model 

Our model consists of two simple steps to build a network, 
as shown in FIGURE I. We assume that we have a determined 
resources, consist of N nodes and M links to construct a 
network. At first, we built n complete graph as a core of the 
network, in which n nodes are connected to each other 
completely. This core therefore has n-1 links. We then add new 
nodes, that each node has only one link, to the existing core. 
New nodes are attached to the existing core by using 
preferential attachment algorithm. 

 

FIGURE I.  THE DESIGN MECHANISM OF PROPOSED NETWORK 

The relationship between the number of nodes N, the 
number of links M, and the core size n can be described as 
follows 
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By isolating n from (4), we obtain 
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where  .  represents the floor function. 

FIGURE II shows the introduced network which have 
N=100 and M=200. As showed in the figure, here, peripheries 
belongs to a single hub and communicate to each other via the 
center core cluster. We call the proposed network as the Core 
Preferential Attachment network (CPA).  

 

 

FIGURE II.  THE VISUALIZATION OF AN EXAMPLE CPA NETWORK 
WITH N=100 AND M=200. 

Yuan [10] estimated the theoretical maximum eigenvalue of 
a network as follows 

 )1(11 −><+≤ kNλ  (6) 

where, <k> is the average degree of the network. 

We then, calculate the largest eigenvalues of the proposed 
CPA networks and compare with the theoretical upper limit 
eigenvalues and the eigenvalues of other networks. The largest 
eigenvalue of the adjacency matrix of each type of network 
with N=500 is showed in FIGURE III as a function of the 
networks’ average degree <k> . Here, CPA is the proposed 
complete graph with preferential attachment algorithm, SF is 
the scale free network based on Barabási-Albert model [12], 
and RND is the random network based on Erdos-Renyi model 
[13]. In the case of CPA, SF and RND network, the result was 
obtained by averaging 10 individual networks. The theoretical 
upper limit is defined and calculated by (6). 
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FIGURE III.  COMPARISON OF LARGEST EIGENVALUES 

The introduced networks also have discriminative value of 
the largest eigenvalue, which characterize the network topology. 
Interestingly, the introduced CPA networks have the largest 
eigenvalues that almost equal to the upper limit along the 
increasing of the average degree <k> . 

IV.  COMPARATIVE SIMULATION STUDY ON CASCADING 

FAILURE 

We conduct simulations to validate the robustness of our 
proposed network against cascading failures. We compare the 
robustness of several networks including the introduced 
networks, generated scale-free networks and random networks. 
All networks have the same number of nodes N=500 and the 
same average degree <k>=4. We compare these networks in 
various values of the tolerance parameter �. 

For the study of attack vulnerability of network, the 
selection procedure of the order in which nodes are removed is 
an open choice. A tractable choice, used in the original study of 
complex networks, is to select nodes with descending order of 
loads (the load, here, can be regarded as degree centrality, 
betweenness centrality, etc.) in the initial network and then to 
remove single nodes one by one starting from the node with the 
highest load. In this paper, we assume that attackers know the 
whole topology of the network and chose a number m of 
highest load nodes to attack simultaneously, which is expected 
to bring the most damage to the network stability. We assume 
that attackers are able to attack m=1~50 nodes simultaneously. 

As showed in FIGURE IV, the robustness of each network 
is the area composited by the horizontal axes and the line that 
represents each network. As the initial number of removal 
nodes m increases, the relative G decreases, indicating network 
with low performance. When m>30, all the networks are 
almost disconnected. On the other hand, as the tolerance 
parameter � increases, the robustness of random network and 
scale-free network also increases, meaning that if we have large 
budget to allocate resources, we might mitigate the damage of 
cascading failures due to malicious attacks. Interestingly, 

despite of the increasing of the tolerance parameter, the 
robustness of the CPA is stable because of its core-periphery 
structure. 

V. CONCLUSION 

In this paper, we studied the robustness of the network 
against cascading failures based on the overload model. We 
introduced the structure and the algorithm to build the least 
susceptible network to the cascading failures. The proposed 
network consists of a complete connected hub nodes cluster 
and periphery nodes that are belong to one of hub nodes. One 
hub node and periphery nodes make a module which can be 
regarded as a simple tree structure. The network consists of 
many the modules (trees), and a center cluster of hub nodes 
unifies them. 

Simulation results showed that the proposed network 
topology can drastically reduce the damage of the cascading 
failures. The center cluster of hub nodes contributes to prevent 
the disconnecting, and the failure of periphery nodes contribute 
to decrease the total load of the system when an intentional 
attack happened. This module architecture is useful to suppress 
the turbulence of load by failures of nodes in both the case of 
intentional attacks and random failures.  

In the study of overload cascading failures, the load on a 
node (or an edge) is generally estimated by its degree or its 
betweenness. The degree method is inferior owing to its 
consideration of only a single node degree, which loses much 
information in many actual applications while the betweenness 
principle, however, is only practical for small and medium-
sized networks but invalid for large scale ones such as the 
Internet or World Wide Web, due to its consideration of 
topological information for the whole network. Therefore, the 
requirement for an applicable model becomes an indispensable 
issue. Our future work then focuses on building more realistic 
overload model and study cascading failures on it. 
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FIGURE IV.  ROBUSTNESS COMPARISON BETWEEN THE PROPOSED NETWORK CPA, THE SCALE-FREE NETWORK, AND THE 
RANDOM NETWORK. EACH LINE REPRESENTS THE AVERAGE RESULT OF 10 INDIVIDUAL NETWORKS. 
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