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Abstract

We consider the Hamiltonian system which is invariant under locally Hamiltonian
(non-Poissonian) action of torus. We show that when a certain set of conditions is
satisfied the majority of motions in a sufficiently small neighbourhood of system’s
relative equilibrium are quasi-periodic and cover coisotropic invariant tori.

Let (M, ω2) be a smooth 2n-dimensional symplectic manifold admitting free smooth sym-
plectic action of k-dimensional torus Tk. The projection

π : M 7→ N ∼ M/Tk

determines the structure of a principal Tk-fibre bundle (M,N, π). Consider a Hamiltonian
system on M with the Tk-invariant Hamiltonian function H = H̃ ◦ π, H̃ : N 7→ R. Our
goal is to investigate motions of such a system in neighbourhoods of its relative equilibria
in the case where Tk-action does not admit the momentum map. Recall that the relative
equilibrium (r.e.) is such a trajectory of motion that coincides with an action orbit of
the one-parameter subgroup of system’s symmetry group [1–3]. In the case where the
momentum map exists the r.e. is usually found applying symplectic reduction, taking into
account that the projection of r.e. is exactly the equilibrium of the reduced system [1–4].

In this paper we consider the case where the 2-cocycle of Tk-action on M is nontrivial,
thus even on the universal covering M̂ of M the induced momentum map (which always
exists on M̂) is not Ad∗-equivariant. To overcome this difficulty we use the reduction
procedure developed in [5–8].

In section 1 we show that, when a certain set of conditions is satisfied, the Hamiltonian
system in a neighbourhood of r.e. may be regarded as close to an integrable one. The
systems of a mechanical type with gyroscopic forces are discussed in more detail in section
2. In section 3 the results of [9] are applied to establish the KAM-like theorem on the
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existence of coisotropic quasi-periodic motions in a neighbourhood of r.e., and in section 4
we investigate the system of three constrained axisymmetrical rotors with the gyroscopic
interaction.

1 Asymptotic integrability of the Tk-invariant
Hamiltonian system near the relative equilibrium

Denote by tk the Lie algebra of torus Tk, and by Xa the vector field on M which generates
action of the torus one-parameter subgroup corresponding to a ∈ tk. The 2-cocycle of
Tk-action is determined by

C(a, b) = ω2(Xa, Xb).

The projection π : M 7→ N gives rise to the reduced Poisson structure (r.P.s.) on N. In
particular, if H = H̃ ◦ π is the Tk-invariant Hamiltonian function, then the projection of
the Hamiltonian vector field =dH on M is the Hamiltonian (with respect to r.P.s) vector
field =NdH̃ on N. There exists a K∗-valued closed 1-form θ on M (K = ker C) such that

(θ(·)|a) = −ω2(Xa, ·) ∀a ∈ K.

This 1-form drops on N, i.e. there exists the 1-form θ̃ on N satisfying π∗θ̃ = θ. The
symplectic leaves of r.P.s are determined by the Pfaff equation θ̃ = 0 (see [5–7] for more
information). Let `(x0) be the symplectic leaf passing through x0 ∈ N. In a neighbourhood
U(x0) of x0 one can define the map J̃ : U(x0) 7→ K∗, which is a local potential of the
1-form θ, and J̃(x0) = 0. Thus `(x0) locally coincides with J̃

−1
(0). The components of

J̃ with respect to some basis of the space K∗ are the local Casimir functions for the r.P.s.
Let x0 be a critical point of H̃|`(x0). Then x0 is the equilibrium for restriction of the

Hamiltonian system ẋ = =NdH̃ to `(x0). Suppose that this equilibrium is stable in linear
approach. Then eigenvalues of the linear operator (=NdH̃)∗|Tx0`(x0) are of the form

±iλ0
1, ...,±iλ0

m, m := dim `(x0)/2 = (dim N− k0)/2,

λ0
j being real. It is well known that there exists a symplectic basis of the space Tx0`(x0)

in which the matrix of a quadratic form d2H̃|Tx0`(x0) becomes

diag(λ0
1, ..., λ

0
m).

In this case the point x0 will be called stable and λ0
1, ..., λ

0
m will be called eigenfrequencies

of the Hamiltonian H̃ at the point x0.

Theorem 1 Let x0 be the stable critical point of H̃|`(x0) and the eigenfrequencies of Hamil-
tonian H̃ at x0 satisfy the nonresonant condition up to the order 2l inclusive, i.e.

k1λ
0
1 + · · ·+ kmλ

0
m 6= 0

for all kj ∈ Z, j = 1, ...,m, 0 <
∑m
j=1 |kj | ≤ 2l.

Then there exists the neighbourhood V(x0) ∈ N of x0 such that:
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1. The portion π−1(V(x0)) is diffeomorphic to the direct product

Bm(0;RI)× Bk0(0;RJ)× Tm × Tk,

where RI , RJ are some positive numbers,

Bm(0;RI) = {I = (I1, ..., Im) ∈ Rm : ‖I‖ < RI},

Bk0(0;RI) = {J = (J1, ..., Jk0) ∈ Rk0 : ‖J‖ < RJ},

Tm = Tmϕ = {ϕ = (ϕ1, ..., ϕm)|mod2π},

Tk = Tkψ = {ψ = (ψ1, ..., ψk)|mod2π}.

2. The Hamiltonian H in coordinates (I,J ,ϕ,ψ) takes the form

H = H0(J) +
m∑
j=1

λj(J)Ij +
∑

2≤j1+···+jm≤l
λj1,...,jm(J)Ij11 · · · Ijmm +

+O(‖I‖l+1), (1)

where H0(J), λj(J), λj1,...,jm(J) are some smooth functions defined in Bk0(0;RJ),
λj(J) satisfying the condition λj(0) = λ0

j , j = 1, ...,m.

3. The matrix of Poisson brackets for the above coordinates does not depend on ϕ and
ψ, in particular,

{I,J} = 0; {ϕi, Ij} = δij ; {ϕ,J} = 0;

{ψ, Ii} =
k0∑
j=1

∂Vi(J)
∂Jj

σj ; {ψ, Jj} = σj , (2)

where {σj = (σi,j , ..., σk,j)}k0j=1 is some basis of K ⊂ tk, Vi(J) are some smooth
functions defined on Bk0(0;RJ).

P r o o f. Consider the neighbourhood U(x0) of x0 for which π−1(U(x0)) ∼ U(x0)×Tkψ.
From now on we will not distinguish between functions f : U(x0) 7→ R and f ◦ π. Let us
introduce coordinates

(u,J) = (u1, ..., u2m, J1, ..., Jk0)

in U(x0), where Jj denotes the j-th component of the map J in the basis of K∗ dual to
{σj}. Obviously, {ψ, Jj} = σj .

By the implicit function theorem, the equation

∂H(u,J)
∂u

= 0

determines the local manifold u = u∗(J) of singular points for the vector field =NdH.
Introducing new variables v = u− u∗(J) we obtain

H = H0(J) +
1
2

(
∂2H(u∗(J),J)

∂u2
v,v

)
+O(‖v‖3),
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where H0(J) = H(u∗(J),J). According to the well known result of Lie (see, for example,
[10]) we may take the matrix of Poisson brackets for the variables (v,J) to be of the form
diag(I2m,0k0), where

I2m =
(

0m −Em

Em 0m

)
,

i.e. v1, ..., v2m are canonical coordinates on each symplectic leaf J = const. Since λ0
i 6=

λ0
j , i 6= j, the matrix ∂2H(u∗(J),J)

∂u2 can be reduced to the diagonal form by means of a
linear canonical transformation which is smoothly dependent on J [11]. Thus there exist
coordinates

(p, q,J) = (p1, ..., pm, q1, ..., qm, J1, ..., Jko),

such that

H = H0(J) +
1
2

m∑
j=1

λj(J)(p2
j + q2j ) +O(‖(p, q)‖3),

where λj(J) are some smooth functions defined in the vicinity of origin of the J -space,
±iλj(J) being eigenvalues of the matrix I2m

∂2H(u∗(J),J)
∂u2 . The symplectic structure on the

leaf J = const takes the standard form dp ∧ dq.
Now introduce canonical coordinates (I,ϕ) by

pj =
√

2Ij cosϕj , qj =
√

2Ij sinϕj .

Observe that {ϕi, Ij} = δi,j and all other pairwise combinations of the Poisson brackets
vanish.

We choose RJ so that the nonresonant properties

k1λ1(J) + · · ·+ kmλm(J) 6= 0

hold true in Bk0(0;RJ) for all kj ∈ Z, j = 1, ...,m, 0 <
∑m
j=1 |kj | ≤ 2l. Then, without loss

of generality, we may take the Hamiltonian H to be reduced to the normal form (1) [3].
We shall find the tk-valued function F (I,J ,ϕ) and scalar functions Vi(J) such that

(2) will hold after transformation ψ 7→ ψ+F . Let L be the subspace of tk additional with
respect to K, so that tk = K ⊕ L. Then

{ψ, Ii} =
k0∑
j=1

ξij(I,J)σj + γj(I,J) + f i(I,J ,ϕ),

where ξij , γj , f i are respectively scalar, L-valued, and tk-valued functions,
∫
Tm

ϕ
f idϕ = 0.

From the Jacobi identity

{{ψ, Ii}, Ij}+ {{Ii, Ij},ψ}+ {{Ij ,ψ}, Ii} = 0

it follows that
∂f i
∂ϕj

=
∂f j
∂ϕi

.
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For this reason there exists the tk-valued function F (I,J ,ϕ) such that f i = ∂F
∂ϕi

. After
the transformation ψ 7→ ψ + F we obtain

{ψ, Ii} =
k0∑
j=1

ξij(I,J)σj + γi(I,J). (3)

Let us prove that γj = 0. As has been shown in [6], there exists the connection form ω of
the principal Tk-fibre bundle (M,N, π) such that

ω2 = hω2 + θ ∧ PKω + C(ω,ω), (4)

holds, where hω2 is the horizontal part of ω2 with respect to ω, θ is the K∗-valued closed
1-form, which has been already defined above, PK is the projection on the subspace K
along L (The condition ι(Xa)ω2 = C(a,ω), ∀a ∈ L, determines the above connection form
uniquely up to the component PKω). Observe that θ(Xa) = 0 holds for all a ∈ tk. Let Xi

be the vector field with the Hamiltonian Ii. In the ψ-coordinates the vertical component
of this vector field (with respect to ω) is given by (3). Denoting by hXi the horizontal
component of Xi, we obtain from (4)

ω2(Xi, Xa) = θ(hXi)PKa+ C(γi,a) = C(γi,a), ∀a ∈ L.

On the other hand
ω2(Xi, Xa) = −dIi(Xa) = 0.

For this reason
γi = 0. (5)

Now let us show that ξij does not depend on I. Observe that the invariance of the Poisson
brackets with respect to shifts of the ψ-coordinates implies the function {ϕl,ψ} to be
independent on ψ, l = 1, ..., k. So, taking into account (3), (5), and the Jacobi identity

{{ψ, Ii}, ϕl}+ {{Ii, ϕl},ψ}+ {{ϕl,ψ}, Ii} = 0,

we obtain

{
k0∑
j=1

ξijσj , ϕl}+
∂

∂ϕi
{ϕl,ψ} = 0.

From this it follows the required property ∂ξij
∂Il

= 0 and, besides that,

∂

∂ϕi
{ϕl,ψ} = 0, l = 1, ...,m, i = 1, ...,m.

Now let us show that the equalities

∂ξij
∂Jl

=
∂ξil
∂Jj

. (6)

hold true. Using the identity

{{ψ, Ii}, ψn}+ {{Ii, ψn},ψ}+ {{ψn,ψ}, Ii} = 0,
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and taking into account (3), (5), we obtain

k0∑
j=1

 k0∑
l=1

∂ξij
∂Jl

{Jl, ψn}

σj + {ψ,
k0∑
j=1

ξij(J)σn,j}+
∂

∂ϕi
{ψn,ψ} = 0. (7)

From this it follows

−
k0∑
j=1

 k0∑
l=1

∂ξij
∂Jl

σn,l

σj +
k0∑
l=1

 k0∑
j=1

∂ξij
∂Jl

σn,j

σl = 0.

That is
k0∑
l=1

 k0∑
j=1

(
∂ξij
∂Jl

− ∂ξil
∂Jj

)
σn,j

σl = 0,

This implies (6). Thus there exist functions Vi(J) in Bk0(0;RJ) such that

ξij =
∂Vi(J)
∂Jj

, i, j = 1, ...,m.

From (7) it also follows that

∂

∂ϕi
{ψn,ψ} = 0, i = 1, ...,m; n = 1, ..., k.

The coordinates constructed above satisfy the statement 3 of the theorem, and the Hamil-
tonian is of the form (1). 2

Remark One can construct the functions Vi(J) in such a way that Vi(0) = 0 will hold.
After the transformation Ii 7→ Ii + Vi(J) we obtain {ψ, Ii} = 0, while all other relations
in (2) remain without changes, and the Hamiltonian takes the form

H = Ĥ(I,J) +O((‖I‖+ ‖J‖)l+1). (8)

Denote by H̄(I,J) the function which is obtained from H in (1) after dropping out
the addendum O(‖I‖l+1). Put

λ̄i(I,J) =
∂H̄(I,J)

∂Ii
, i = 1, ...,m;

λ̄m+j(I,J) =
∂H̄(I,J)
∂Jj

+
m∑
i=1

λ̄i(I,J)
∂Vi(J)
∂Jj

, j = 1, ..., k0.

The system with the Hamiltonian H̄ becomes

İ = 0; J̇ = 0; ϕ̇i = λ̄i(I,J), i = 1, ...,m;

ψ̇ =
k0∑
j=1

λ̄m+j(I,J)σj . (9)
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and obviously is integrable. Any common level I = I0 6= 0, J = J0 is a r-dimensional
(r = m + k0) coisotropic invariant torus of the system (9). The motion on this torus is
quasi-periodic with r1 ≤ r rationally independent frequencies. The arithmetic properties
of the frequencies are determined, in particular, by those of vectors σj and are ”regulated”
by functions λ̄i(I,J), i = 1, ...,m + k0. The question whether the case of quasi-periodic
motions with r rationally independent frequencies is in some sense typical depends to
a large extent on non-degeneracy properties of the above functions. In section 3 these
properties will be formulated in terms of functions λ̄i(0,J), i.e. actually through

H0(J), λi(J),
∂V (J)
∂Jj

, j = 1, ..., k0, i = 1, ...,m.

If the manifold of equilibria for the reduced system is already found then main technical
difficulties appear in finding functions Vi(J). It turns out that the above problem is got
into the important class of mechanical systems which will be considered in the next section.

2 Mechanical systems with gyroscopic forces

Let M be a n-dimensional Riemannian manifold admitting free smooth isometric action
of torus Tk and p : M 7→ N = M/Tk be the natural projection of the corresponding
principal Tk-fibre bundle. Consider the Tk-invariant mechanical system on T ∗M with the
total energy

H = T + U ◦ pr :=
1
2
(p|A−1(q)p) + U(q),

and a gyroscopic force Γ (we use notations of [7, 8]). This system may be regarded as
a Hamiltonian one on the twisted cotangent bundle (M, ω2), where M = T ∗M, ω2 =
dΛ + pr∗Γ, dΛ is the standard symplectic structure on T ∗M and pr : M 7→ M is the
natural projection. Denote by Ya the generator of the one-parameter subgroup action on
M, a ∈ tk, and define a bilinear form C(a, b) = Γ(Ya, Yb) which is assumed to be nontrivial.
Since in the sequel only the neighbourhood of r.e. will be investigated, suppose that the
manifold N is simply connected. Then there exists the map µ : M 7→ K∗ := (ker C)∗
satisfying

d(µ|a) = −ι(Ya)Γ, a ∈ K.

Thus we can define the momentun map J of K-action on M:

ι(Xa)ω2 = −d(J |a) := −d(m+ µ|a) a ∈ K.

(Recall that m denotes the momentum map of torus action on T ∗M.) Obviously, dJ = θ.
To reduce the above Hamiltonian system we use in [7] the map

π := π0 ◦ P0 × (m+ P∗Kµ) : M 7→ T ∗N × (tk)∗

which is the projection of the principal Tk-fibre bundle. Now we are going to concretize
the reduction procedure and expose it in the form convenient for our purposes. Observe
that a rather hard assumption from [7] about concordance of Γ and the Riemannian metric
will not be used in our future reasoning.
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2.1 Coordinates of the action-angle type near the relative equilibrium

Let q̃ = (q̃1, ..., q̃n−k) be coordinates in such a domain N ′ ⊂ N that p−1(N ′) ∼ N ′ × Tkψ,
and p̃ = (p̃1, ..., p̃n−k) be canonically conjugate ones, so that the Liouville 1-form Λ on
T ∗N ′ is expressed as p̃dq̃. We also have

ω2 = d ((p̃dq̃) + d(m|dψ)) + Γ,

H = T (q̃; p̃,m) + U(q̃),

where T is a quadratic form with respect to p̃,m. Let L ⊂ tk be the subspace mentioned
in the previous section. On the portion p−1(N ′) one can construct the connection form

ω = dξ(q̃) + dψ,

where ξ : N ′ 7→ L is a smooth map, in such a way that

ι(Ya) = C(a,ω), ∀a ∈ L.

Then
Γ = d (ζ(q̃)dq̃ + (µ(q̃)|PKω)) +

1
2
Cω ∧ ω,

where ζ : N ′ 7→ Rn−k is a smooth map, and C : tk 7→ (tk)∗ is the linear operator
determined by (Ca|b) = C(a, b).

Identifying L⊥ with K∗ and K⊥ with L∗, we have the decomposition (tk)∗ = K∗ ⊕
L∗. Denote by m̄ the L∗-component of the map m and by CL : L 7→ L∗ the operator
corresponding to the bilinear form C|L. After the change of variables

q̃ = q̆, p̃ = p̆+
∂

∂q̆
(m|ξ(q̆))− ζ(q̆),

ψ = ψ̆ − ξ(q̆)−C−1
L m̄,

we obtain

ω2 = dp̆ ∧ dq̆ + dJ ∧ PKdψ̆ −
1
2
dm̄ ∧C−1

L dm̄+
1
2
Cdψ̆ ∧ dψ̆. (10)

There exists the basis γ1, ...,γl,η1, ...,ηl in L ⊂ tk for which

C(γi,γj) = 0, C(γi,ηj) = δij C(ηi,ηj) = 0

holds. Put q̄i = (m|γi), p̄j = (m|ηj) to get

ω2 = dp̆ ∧ dq̆ + dp̄ ∧ dq̄ + dJ ∧ PKdψ̆ +
1
2
Cdψ̆ ∧ dψ̆. (11)

From this one can easily obtain the formulae for Poisson brackets:

{q̆i, p̆j} = δij ; {q̄i, p̄j} = δij ;

{ψ̆, (J |a)} = a, a ∈ K; {ψ̆i, ψ̆j} = const.

The brackets of all other of combinations pairwise coordinates vanish. Obviously, u =
(p̆, p̄, q̆, q̄) represents canonical coordinates on each symplectic leaf.
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Proposition 1 Let the Tk-invariant mechanical system with gyroscopic forces satisfy the
conditions of Theorem 1. Then the functions Vi(J), i = 1, . . . ,m in formula (2) vanish.

P r o o f. Let Λ = p̆dq̆ + p̄dq̄ and (I,ϕ) be the action-angle coordinates constructed
in Theorem 1. The vector field =NdIi in coordinates (I,ϕ,J) becomes ∂

∂ϕi
. Then via the

well known formula for the Lie derivative we have

∂

∂ϕi
Λ = d

(
Λ(

∂

∂ϕi
)
)

+ ι

(
∂

∂ϕi

)
dΛ.

Since ι(=dIi)ω2 = −dIi, and the ψ-component of the vector =dIi is of the form

{ψ, Ii} =
m∑
j=1

∂Vi(J)
∂Jj

σj +
∂F

∂ϕi
,

then

−dIi =
∂

∂ϕi
Λ− d

(
Λ(

∂

∂ϕi
)
)
− {ψ, Vi(J)} −

−(dJ |PK
∂F

∂ϕi
) + (C

∂F

∂ϕi
|dψ).

Averaging with respect to ϕ leads to

dIi = d

(
1

(2π)m

∫
Tm

ϕ

Λ(
∂

∂ϕi
)dϕ

)
+ {ψ, Vi(J)}. (12)

Observe that Λ( ∂
∂ϕi

) is the coefficient of dϕi in the 1-form Λ written in the coordinates
(I,ϕ,J). Since

dΛ|J=const = dI ∧ dϕ = d(Idϕ),

then averaging the above coefficient over the torus Tmϕ we must obtain the function of the
form Ii +Gi(J). On the other hand, from the proof of Theorem 1 it follows that Λ in the
coordinates (I,ϕ,J) becomes

Λ =
m∑
i=1

 m∑
j=1

[aij(J ,ϕ)
√

2Ij + uj(J)]d
m∑
l=1

[bij(J ,ϕ)
√

2Ij + vj(J)]


with appropriate functions aij , bij , uj , vj satisfying∫

Tm
ϕ

aijdϕ =
∫
Tm

ϕ

bijdϕ = 0.

Now it is clear that Gi(J) = 0, and from (12) it follows that ∂Vi(J)
∂Jj

= 0. 2



COISOTROPIC QUASI-PERIODIC MOTIONS 349

2.2 The equilibria of a reduced system

Let (y,ψ) be coordinates of the direct product in a portion p−1(N ′)∼ N ′ × Tkψ ( for
convenience we write y instead of q̃). The kinetic energy takes the form

T =
1
2

(
(Ã(y)ẏ|ẏ) + (B(y)ψ̇|ψ̇)

)
+ (D(y)ẏ|ψ̇),

where
Ã(y) : TyN ′ 7→ T ∗yN ′, B(y) : tk 7→ (tk)∗, D(y) : TyN ′ 7→ (tk)∗

are operators that smoothly depend on y.
Denote by ω̂ the connection form naturally generated by the Riemannian metric on

M, so that the equality ω̂(ξ) = 0 is equivalent to the orthogonality condition of the vector
ξ to the orbit of torus action. One can easily verify that ω̂ = = dψ + E(y)dy, where
E = B−1D, and then

T =
1
2

(
(Â(y)ẏ|ẏ) + (B(y)ω̂|ω̂)

)
,

where Â = Ã − D∗B−1D. Having introduced the momenta

p̂ = Âẏ, m = Bω̂,

we obtain the coordinates (p̂,m,y,ψ) on T ∗N ′ in which the Liouville form is represented
as p̂dy + (m|ω̂), and the Hamiltonian takes the form

H =
1
2
(p̂|Â−1(y)p̂) +

1
2
(m|B−1(y)m) + U(y).

Observe that the standard momentum

p̃ =
∂T

∂ẏ
≡ Ã(y)ẏ +D∗(y)ψ̇

is connected with p̂ by the relation

p̂ = p̃− E∗m.

Let ı : K 7→ tk be an embedding. Define the family of projections

{P ∗
i (y) : (tk)∗ 7→ (tk)∗}, i = 1, 2,

P ∗
1 (y) = B(y)ıB−1

K (y)ı∗, P ∗
2 (y) = Id− P ∗

1 (y),

where BK(y) := ı∗B(y)ı : K 7→ K∗ is the symmetric positive operator.

Theorem 2 For any c ∈ K∗ the point (p̂0,m0,y0) is the stationary one for H|J−1
(c)

iff

p̂0 = 0, m0 = P ∗
1 (y0)m0 = B(y0)ıB−1

K (y0)(c− µ(y0)),

and y0 is a stationary point for the ”effective potential”

Uc(y) =
1
2

(
c− µ(y)|B−1

K (y)(c− µ(y))
)

+ U(y).



350 I. PARASYUK

P r o o f. Since for any y ∈ N ′ the subspaces

L∗2(y) = P ∗
2 (y)(tk)∗, L∗1(y) = P ∗

1 (y)(tk)∗

are orthogonal with respect to the scalar product (·|B−1(y)·), it follows that

H =
1
2
(p̂|Â−1(y)p̂) +

1
2
(P ∗

2 (y)m|B−1(y)P ∗
2 (y)m) +

+
1
2
(ı∗m|B−1

K (y)ı∗m+ U(y).

From the definition of J we obtain ı∗m = J−µ.Next, observe that the map P ∗
2 (y)|(ı∗)−1(c−µ)

is one-to-one for any y ∈ N ′. This implies that the condition d(H|J−1(c)) = 0 is equivalent
to p̂ = 0, P ∗

2 (y)m = 0, dUc = 0. 2

3 KAM-theory for coisotropic quasi-periodic motions

near the relative equilibrium

Consider the system with the Hamiltonian (1). For RI � 1 the addend O(‖I‖l+1),
which is the function of variables I,J ,ϕ, plays a role of perturbation for the integrable
Hamiltonian H̄. In this situation we are going to apply the KAM-theory, in particular
the results of [9], in order to establish the strict statement on the existence of coisotropic
quasi-periodic motions. Generalizing our problem, we shall investigate the system with a
Hamiltonian H̄ + h, where h is a ”small” function which may depend not only on I,J ,ϕ,
but also on ψ.

First of all, let us focus on the non-degeneracy condition of the map

λ̄ : Bm(0;RI)× Bk0(0;RJ) 7→ Rs, s := m+ k0,

where λ̄ = (λ̄1, ..., λ̄s), or of the map

λ̄
′ : Bm(0;RI)× Bk0(0;RJ) 7→ RPs−1,

where λ̄′ = λ̄1 : · · · : λ̄s. The above condition must ensure that the image of the map λ̄ or
λ̄′ can be stratified by unflattening curves in the sense of [12].

In the case when RI � RJ it is sufficient to impose the non-degeneracy condition on
the map λ(J) := λ̄(0,J), in which the first m components are determined by the functions
λi(J) in (1), and others are of the form

λm+j(J) =
∂H0(J)
∂Jj

+
m∑
i=1

λi(J)
∂Vi(J)
∂Jj

.

Definition 1 The map λ : Bk0(0;RJ) 7→ Rs will be called unflattening if there exists a
surjective diffeomorphism

w : {z ∈ [0, 1]} × Bk0−1(0; 1) 7→ Bk0(0;RJ),
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such that for some ∆ > 0 the condition

|det

(
∂

∂z
λ ◦w;

∂2

∂z2
λ ◦w; ...;

∂s

∂zs
λ ◦w

)
| ≥ ∆ > 0. (13)

is fulfilled in the domain of definition of w.

To avoid technical complications we shall consider real analytic objects instead of smooth
ones.

Theorem 3 Suppose that the Tk-invariant system with the Hamiltonian H satisfies the
conditions of Theorem 1 with l > s+3, the map λ(J) is unflattening, and for some γ > 0
the following inequalities are valid:

k0∑
j=1

|(n,σj)| > γ

 k∑
j=1

|ni|

−r

,

∀n = (n1, ..., nk) ∈ Zr \ {0}, r = m+ k0. Let ε be an arbitrary positive number.
Then there exists δ(ε) > 0 such that for RI < δ(ε) and |h| < Rs+4

I there exists a set
Q ⊂ π−1(V(x0)) with the following properties:

1.

mesQ > (1− ε)mes[π−1(V(x0))].

2. The motion of each point belonging to Q under the action of the flow generated by
the Hamiltonian vector field =d(H̄+h) is coisotropic quasi-periodic with r rationally
independent frequencies.

P r o o f. To apply the main theorem of [9] we put

G = {z ∈ Cs : Rez ∈ Bm(0;RI)× Bk0(0;RJ), |Imz| < %},

where % is a sufficiently small positive number, and consider H̄ in (1) to be the unperturbed
Hamiltonian. Next, we fix RJ , whereas the number RI will be used to controll the value
of the perturbation M ∼ Rs+4

I . Following the proof in [9] we construct the sequence of
sets

G ⊃ G1 ⊃ · · ·Gj ⊃ · · ·

and the sequence of diffeomorphisms

Φj : ReGj × Tr 7→ ReG× Tr,

such that
(H̄ + h) ◦ Φj+1(I,J ,ϕ,ψ) = Hj+1(I,J) + hj+1(I,J ,ϕ,ψ).

We can pick out such small positive δ and α that the inequalities

|hj(x)| < R
(s+3)(1+α)j

I , |x− Φj(x)| < δ, |Id− ∂Φj(x)
∂x

| < δ (14)
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hold true for all RI ∈ (0, δ] and x ∈ ReGj .
It turns out that the required set can be correctly defined asQ := Φ∞(ReG∞×Tk). We

use the technique developed in [9] to estimate the Lebesgue measure for the intersection
of the set ReG∞ with each unflattening curve given by

I = I0, J = w(z, c),

where c ∈ Bk0−1(0; 1), I0 ∈ Bm(0;RI). Namely, one can show that for arbitrary

η ∈ (0, 1), c ∈ Bk0−1(0; 1− η) and I ∈ Bm(0; (1− η)RI)

there exists the limit

mes{z ∈ [η, 1− η] : (w(z, c), I) ∈ ReG∞} → η(1− η), RI → 0,

and this implies that
mes ReG∞ → mes ReG, RI → 0.

2

4 Coisotropic quasi-periodic motions in a system
of constrained rotors

Consider the mechanical system consisting of three axisymmetric rotors which are con-
strained in such a way that: 1) each rotor can rotate around its symmetry axis, which
passes through rotor’s center of mass; 2) the total senter of mass of constrained rotors
admits rotations in Oyz-plane about x-axis.

The configuration space of the above system is a torus T4. Denote by θ the angle
between the position vector of center of mass and vector −ez, and by ψi the angle which
measures rotation of the i-th rotor about its symmetry axis. The configuration space will
now be considered as a trivial T3-fibre bundle over circle S1. Suppose that besides the
force of gravity also the gyroscopic force acts upon our system, the corresponding 2-form
being as follows:

Γ =
3∑
i=1

gi(θ)dθ ∧ dψi + σ1dψ2 ∧ dψ3 + σ2dψ3 ∧ dψ1 + σ3dψ1 ∧ dψ2.

Here gi : S1 7→ R are some smooth functions, σi ∈ R.
The kinetic energy of the above system is of the form

1
2
Ãθ̇2 +

3∑
i=1

(Biaiθ̇ψ̇i +
1
2
Biψ̇

2
i ),

where Ã is system’s moment of inertia with respect to x-axis, Bi is the i-th rotor’s moment
of inertia with respect to its symmetry axis, ai is the direction cosine of this symmetry
axis with respect to x-axis.
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The potential of the system is

U(θ) = −ρ cos θ

with some ρ > 0. Having introduced momenta

p̃ = Ãθ̇ +
3∑
i=1

Biaiψ̇i, pi = Biψi +Biaiθ̇,

one obtaines the Hamiltonian of the system

H =
1

2Â
(p̃−

3∑
i=1

aipi)2 +
3∑
i=1

1
2Bi

p2
i − ρ cos θ,

where Â = Ã −
∑3
j=1Bja

2
j . The Hamiltonian and the form of the gyroscopic force are

invariant with respect to the action of torus

T3
ψ = {ψ = (ψ1, ψ2, ψ3)|mod2π}.

Using the approach developed in the previous section we shall show how one can eliminate
the cyclic coordinates ψ1, ψ2, ψ3 in the case of the symplectic structure

ω2 = dp̃ ∧ dθ +
3∑
i=1

dpi ∧ dψi + Γ.

For this purpose we shall find the Casimir function of r.P.s. and construct the canonical
coordinates on each symplectic leaf.

Let (·, ·) be the standard scalar product in t3 naturally associated with coordinates
ψ1, ψ2, ψ3 on T3

ψ. We identify t3 with (t3)∗ by means of the above scalar product. The
matrix of the operator B defined in the previous section becomes

B = diag(B1, B2, B3),

and the matrix of the 2-cocycle C is of the form

C =

 0 σ3 −σ2

−σ3 0 σ1

σ2 −σ1 0

 .
Obviously, σ = (σ1, σ2, σ3) ∈ ker C. Besides the standard scalar product we denote the
B-scalar product as (B·, ·). Now introduce in t3 a B-orthogonal basis

ε1 =
1√

(Bσ,σ)
, ε2, ε3,

which satisfies the conditions

(Bε1, ε1) = 1; (Bεi, εi) = 1/ν, i = 2, 3; C(ε2, ε3) = 1
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for appropriate ν > 0 and a dual one

ε∗1 = Bε1, ε∗i = νBεi, i = 2, 3.

Denote by L a subspace spanned by ε2, ε3. According to our approach we define a con-
nection form

ω =
3∑
i=1

ωiεi

in such a way that
ι(Ya) = C(a,ω) ∀a ∈ L,

where Ya is the vector field which generates the action of a one-parameter subgroup of T3

corresponding to a, so that ι(Ya)dψ = a. It is easy to see that

ω1 = (ε∗1, dψ);
ω2 = (g(θ), ε3)dθ − C(ε3, dψ)
ω3 = −(g(θ), ε2)dθ + C(ε2, dψ),

where g(θ) = (g1(θ), g2(θ), g3(θ)), and thus

ω = dξ(θ) + dψ,

where
dξ(θ) = ((g(θ), ε3)ε2 − (g(θ), ε2)ε3)dθ.

Put

p = (p1, p2, p3); mi = (p, εi), i = 1, 2, 3; m =
3∑
i=1

miε
∗
i .

It is clear that mi is a component of the momentum map of T3-action on T ∗T4 with
respect to the standard symplectic structure d(p̃dθ+

∑3
i=1 pidψi) and basis {ε∗i }3

i=1 of the
dual space (t3)∗. Now we have

ι(Xε1)ω
2 = −(dm1 + (g(θ), ε1)dθ),

from whence
J = m1 +

∫
(g(θ), ε1)dθ

is the local Casimir function. After the change of variables

pθ = p̃−m2(g(θ), ε3) +m3(g(θ), ε2), q̄ = m2, p̄ = m3,

dψ̆ = dψ + [(g(θ), ε3)ε2 − (g(θ), ε2)ε3]dθ + ε2dm3 − ε3dm2

the symplectic structure becomes

ω2 = d(pθdθ + p̄dq̄ + J(ε∗1, dψ̆)) + σ1dψ̆2 ∧ dψ̆3 + cycle,

and we get following formulae for the Poisson brackets of coordinates pθ, θ, q̄, p̄, J :

{θ, pθ} = 1, {q̄, p̄} = 1.
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The brackets of all other combinations of pairwise coordinates vanish. So, pθ, θ, q̄, p̄, J
represent canonical coordinates on each symplectic leaf J = const.

Since
3∑
i=1

1
Bi
p2
i = (B−1

3∑
i=1

miε
∗
i ,

3∑
i=1

miε
∗
i ) = m2

1 + ν(m2
2 +m2

3),

the Hamiltonian in above coordinates becomes

H =
1

2Â
(pθ + q̄f(θ) + p̄h(θ) + (J − µ(θ))b)2 +

+
1
2
ν
(
q̄2 + p̄2

)
+

1
2

(J − µ(θ))2 − ρ cos θ, (15)

where
f(θ) = (a, ε2) + (g(θ), ε3), h(θ) = (a, ε3)− (g(θ), ε2),

a = (a1, a2, a3), b = (a, ε1), µ(θ) =
∫

(g(θ), ε1)dθ.

Now one can show that the equilibria of the reduced system are defined from

ρ sin θ − (J − µ(θ))µ′(θ) = 0; (16)

q̄ = p̄ = 0; pθ = (µ(θ)− J)b.

Now it is necessary to ascertain the conditions which guarantee that the system linearized
at equilibrium is stable and possesses different eigenfrequencies. To avoid technical com-
plications we shall consider the case where

Â = 1, g(θ) = g = const, (g, ε1) := g 6= 0.

Then
f(θ) = f = const, h(θ) = h = const, µ(θ) = g · θ,

and the first equation in (16) becomes

ρ sin θ − (J − gθ)g = 0, (θ ∈ [0, 2π)). (17)

It possesses at most three roots in the segment [0, 2π). Let θ∗ = θ∗(J) be one of the above
roots. The corresponding value of momentum is

pθ∗ = (gθ∗ − J)b =
bρ

g
sin θ∗.

One can show that for any fixed J and pθ = pθ∗ , θ = θ∗, q̄ = 0, p̄ = 0 the characteristic
polynomial of the linearized system is of the form

λ4 + (g2 + ρ cos θ∗ + ν(f2 + g2) + ν2)λ2 + (g2 + ρ cos θ∗)ν2,

nd the square of its roots is

λ2
1,2 = −1

2

(
g2 + ρ cos θ∗ + ν(f2 + g2) + ν2

)
±

±1
2

√
(g2 + ρ cos θ∗ + ν(f2 + h2) + ν2)2 − 4(g2 + ρ cos θ∗)ν2.
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These quantities will be negative and different if

g2 + ρ cos θ∗ > 0. (18)

Next, since

H0(J) =
1
2
(J − gθ∗)2 − ρ cos θ∗,

then taking into account (17) we obtain

λ3(J) =
∂H0(J)
∂J

= (J − gθ∗) =
ρ

g
sin θ∗.

To apply Theorem 2 we need to verify that (13) holds true. One can pick out a diffeomor-
phism w : [0, 1] 7→ R in such a way that

g2 + ρ cos θ∗(w(z)) + ν(f2 + h2)− ν2 = z + a

for some a ∈ R. Then

λ2
1,2(z) =

1
2
(−(z + b)±

√
(z + a)2 + c),

λ3(z) =
ρ

g

√
1− (z + e)2/ρ2,

where b, c, e ∈ R are constants. Obviously the Wronskian of functions d
dzλi(z), i = 1, 2, 3,

does not equal identically to zero. Thus we arrive at the following

Conclusion If the condition (18) is valid for J ∈ [0, RJ ], and for some γ > 0 the
inequalities

3∑
j=1

|njσj)| > γ

 3∑
j=1

|ni|

−5

∀(n1, ..., nk) ∈ Z3 \ {0},

are satisfied then the system under consideration possesses coisotropic quasi-periodic mo-
tions with five rationally independent frequencies.
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