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Abstract
The subalgebras of the invariance algebra of equation Ou+\(u? +u3 +u3)'/?ug = 0 are
described with respect to the conjugation. Reduction of this equation to a differential
equation in a less number of independent variables is implemented by means of every

subalgebra from the obtained list.

1 Introduction

The wide class of nonlinear wave equations which are invariant under the Euclidean groups
are described in [1]. One such equation has the form [1]

Pu  Pu Pu 0*u ou \? Ou \ 2 ou \2 1/ ou
Oxz Oxy Oz Oxj Oxy Oz O0xa Oxg
This equation is invariant under the Lie algebra F' generated by the following vector fields
0 0 0 0
Py=— P, = . Jab = Tai— — )
07 Dxo’ 0x, b= oxp o 0z,

0 0 0 _
D—xga—xo—l-az Bz, =5,

(a<b; a,b=1,23).

Fushchych and Serova [1] have investigated the symmetry reduction of equation (1)
with one-dimensional subalgebras of the algebra F' and have found some exact solutions
of this equation. These results have also been presented in the book [2].

Equation (1) is invariant under the mapping (zo, z1, z2, z3,u) — (xo, —21, T2, T3, U).
By carrying out the symmetry reduction we can consider subalgebras of the algebra
F' with respect to the conjugation defined by the group G, generated both by inner
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automorphisms of the algebra F' and the automorphism

Ph—F, Ph——-P, PB—PFP P—FP D-—D,
Z —Z, Jiog— —Ji2, Jiz3— —Jiz, Jaz — Jo3.

Here the complete list of subalgebras of the algebra F' are obtained with respect to
G-conjugation and symmetry reductions of equation (1) are done on all subalgebras from
this list. Also, new invariant solutions of this equation are found. Concepts and results of
group analysis of differential equations can be found in the books of Ovsyannikov [3] and
Olver [4].

Let L be a subalgebra of the algebra F' and the rank of L be equal to r, 1 < r < 3,
with k£ = 4 — r. We shall designate by wy,...,wk,wr+1 a complete system of functionally
independent invariants of the subalgebra L. Here we assume that the invariant wyiq
depends on u and other invariants do not depend on u. Notation L =< Xi,..., X >
denotes that X1,..., X, are generators of the algebra L. We shall designate the sequence
of algebras Vi+)K, ..., Vi, +)K by K : Vi,..., V.

An ansatz corresponding to the subalgebra L has the form

Wk+1 = cp(wl,...,wk). (2)
Let
_ 9y Py
Pa = Oy’ Pab = Deogdy”

For k = 1 we shall write w instead of wi, ¢ — instead of ¢1 and ¢ — instead of ¢1;.

For any given subalgebra of the algebra F' after colon we point out the corresponding
ansatz (2), solved with respect to u in terms of invariants wi, ..., wy, as well as the reduced
equation received by means of the given ansatz from equation (1). We shall presuppose
that A # 0.

2 Classification of subalgebras of the invariance algebra

Symmetry reductions are realizable only when a subalgebra has an invariant which de-
pendent on u. In connection with that one should consider only those subalgebras of the
algebra F', which do not contain Z. As a representative of the class of subalgebras, which
have with the respect to G-conjugation the same invariants, we shall take the subalgebra,
which is not contained in any other subalgebra with this property. We call this subalgebra
the I-maximal one. It is defined uniquely with respect to G-conjugation.

For description of subalgebras of the algebra F' we use the general method suggested
by Patera, Winternitz and Zassenhaus [5] and supplemented by series of structural propo-
sitions in the book of Fushchych et al. [6].

Using the Lie-Goursat classification method for subalgebras of algebraic sums of Lie
algebras [5, 6], we obtain that non-zero subalgebras of the algebra AO(3)® < D, Z > are
exhausted with respect to inner automorphisms by the following subalgebras:

<D+aZ>(a€eR); <Z> <D, Z>;
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<Juut+aD+ 372> <Jo+aZ D+pBZ > <Jio, Z>;
< Ji9,D,Z >, «,f € R; (3)
A0(3); AO(3)® < D + aZ >; AO(3)® < Z >; AO(3)® < D, Z > .

Let K be one of the subalgebras (3) and K be such a subalgebra of the algebra F
that its projection onto AO(3)® < D, Z > coincides with K. If the projection of K onto
< D > is non-zero, K annules the only zero subspace of the space U =< Py, P1, P», P3 >.
Let us assume that Z ¢ K. Then K could be considered as a completely reducible algebra
of linear transformation of the space U. In accordance with theorem 1.5.3 [6], algebra
K is conjugated with the algebra of the form V+)K, where V. C U. If Z € K, then
K =< Z > ®K;. In accordance with the above arguments, K is conjugated with the
algebra of the form (V+ < Z + X >)+)K; where V C U and X € U. Using proposition
1.2.2 [6] we conclude that X € V. Therefore it is possible to assume that X = 0.

If the projection K onto < D > is zero, then Kisa subalgebra of the direct sum
AE(3)® < Py, Z >. Non-zero subalgebras of the algebra AO(3)® < Py, Z > are exhausted
with respect to inner automorphisms by subalgebras, which can be obtained as a result
of the formal substitution D onto Py in the subalgebras (3). To classify subalgebras of
the algebra < P, P>, P3 > ® < Py, Z >, one should use the Lie-Goursat classification
method and Witt’s mapping theorem [7]. Let m(K') be the projection K onto AO(3). If
7(K) =< Jia >, then because of the theorems 1.5.3 and IIL4.1 [6] algebra K contains,
with respect to conjugation, its own projection onto < P, P >. If m(K) = AO(3) then
its own AO(3) C K and K contains its own projection onto < Py, Py, P3 > .

According to what has been said, it is not difficult to see that non-zero I-maximal
subalgebras of the algebra F' are exhausted with respect to G-conjugation by subalgebras:

A. Subalgebras having zero projections onto AO(3):
<Py><aPy+ P> < Py,PL > <P+ P,P, >,
where a > 0,3 > 0;
<D+aZ>0,<Py><pPPy+P,><Py),PL><~vPy+ P, P, >,
where a, 3,7 € Rand 8 > 0,7 > 0;
<Z+xPFPy>0,<aPy+ P> < pBPy+ P, P; >,
where a > 0,6 > 0;
<Z+aPy+ P, > 0,< 8P+ P > <~vFP+ P, P3 >,
where a, 3,7 € Rand § > 0,7 > 0;
<Z+ P >< P> < P,P;>.

B. Subalgebras having zero projections onto < D, Z > and having non-zero projections

onto AO(3):

<Jio>: 0, < Py><aPy+P3s > < Py,P3s >, < P,P, >,
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< Py, P, Py >, < BPy+ P53, P, P> >,
where a > 0,3 > 0;
<Jig+ Py>:0,<aPy+ Py > (a > 0);
< Jig+aPy+ P3> (a>0);< Jig+ Ps, Py >;
< J12,J13,J23 >: 0, < Py >, < Py, Py, P3 >, < Py, P, P>, P3 > .

C. Subalgebras having zero projections onto < D > and having non-zero projections onto
AO(3) and < Z >:

<Jp+aZ>0,< P> < PP+ Ps>,< Py, P3 >,
where a > 0,3 > 0;
< Ji+Py+aZ >:0,< BPy+ P3 >,
where a #£ 0, 8 > 0;
<Ju+taly+P3+pZ> (a€R,(B>0)
<Jio+Ps+aZ Py> (a>0);
<Ju>< Py+aZ P,P, > <P y+Ps+ Z, P, P, >,
<Py+aZ Ps+~vPy,P1,P, >, < Py,P3s+ Z, P, P, >,
where a = +1,6 € R,y > 0;
< Py+aZ,Ji2+ Py + vP3 >,
where a =+41,8>0,vy€ Rora==+1,6=0,v > 0;
< aPy+ P3+ Z,Jio+ Py +vP3 >,
where o, 3,y € Rand 8 > 0or 8 =0,7 > 0;
< Py +aZ P+ Ry, Jiz+ 7R >,
where o = +1,6 > 0,7 > 0;
< Py, 3+ Z,J12 +aP3; > (a > 0);
< Jig, J13, Jos > < Py +aZ >, < P+ aZ, P, P, P3 > (o= =+1).
D. Subalgebras having non-zero projections onto AO(3) and < D >:
<Ju+aD+ 372 >:0,< Py><~vP)+ P3s >,< Py, P3 >,
where o, 3,7 € Rand a >0, ~>0;
<Jo+aZ,D+BZ >:.0,< Py ><~vyPy+ P3 >, < Py, P3 >,
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where a, 3,7 € Rand o >0, ~ > 0;
< Jio,D+aZ >+) < P,P, > (a € R);
< Jis,D+aZ >< Py,P\,P, >, < Py + P3, P, Py >,
where a #£ 0,3 > 0;
< Ji2, 13, J23, D + aZ > (a € R);
< Jig, J13, Jag, D + aZ >:< Py >,< Py, P», P3 > (a # 0);
< Ji2, 13, Jog, D, Py, Py, Po, P3 > .

We note that the subalgebras of maximal rank three are used for our reduction.

3 The reduction of (1) to ordinary differential equations

31. < Py,Ps,D+aZ >(a€R):u= %hl{m%%—m%}%—g@(a}), w= ﬂ,
Z2

(14 w?)@ + 2w = 0.
In this case ¢ = C} arctan w + C5 and therefore

u= %ln{x% + 23} + C} arctan S Cy,
T2

where C] and (5 are arbitrary constants.

32. <aPy+ P,Ps,D+3Z> (a«>0, BER):

u=fnw +pw), w=—"—)
g — axq

(1= a?)w? — 1] + 2(1 — a)wp—

Ao\ a2w2g? + (Bt + §)2¢ + w2 =0, (4)

where ¢ = sign (z¢g — a1 ).
Let 8 = 0. Then equation (4) is of the form

(1 = a®)w? —1]p +2(1 — a)wp — edwV a2w? + 1]@|p = 0. (5)
For o =1 and ¢ > 0 we obtain that
3

b= _
w2 +1)2 +C

If C = 0 then
3

— +C.
eAw? 4+ 1)%

SO:
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The function

3w
A\/($0—$1)2+$%

where zog — x1 > 0 for A > 0 and xg — 21 < 0 for A < 0 is the corresponding invariant
solution of (1).
For a =1 and ¢ < 0 we receive the solution

+C,

u

3w
A \/(wo —1)% + 23

where A\(xg — z1) > 0.
Let o # 1 and ¢ > 0. The substitution 1) = 1/¢ transforms (5) into the linear equation

u =

+C,

(1 - a®)w? — 1Y — 2(1 — a®)wi) + edwVa2w? + 1 = 0. (6)

If

1 2
T—a2 ="

then the function

2 1 2,2 _
w:L“;Q[H(az—W] LYot liop
(1—a?) 4p  |Va2w? ¥ 1+p

is the general solution of (6). If

a?w? +1 Lc
2(a2w? + 1 — p?) !

1 2
Toa2 7

then the general solution of (6) is

0626
Y= (1)\—042)2[1 +(0® = 1)w?] {—

+ — arctan
2(0w? +1+p%)  2p p

a?w? +1 1 a?w? +1
— +C1 ;.

In every of the cases the solution of (1) is of the form

d
Y= f—f—C’g, and u = p(w).

33. <aPy+ P,Ps,Z+pBFPy> (>0, [f==1):

U = /6:1:0 - O‘/Bl‘l + SD(W), W = T2,

@ — BA\/ a2+ 2 =0.
It is easy to find that

L O2e2Mw _ 2
°= "gcem (@70
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and therefore

p = Cre ™ + e M 4 0y,

422C

a2

M2 0y Oy £ 0.
4)\2016 +Cs, C1 #

u = frg — afr; + Cre**2 4

34. < Py, P3,Z+ P> u=x+pWw), w=x2, ¢=0.

The corresponding invariant solution of (1) is of the form u = 1 + C1x1 + Cy , where
C and (5 are arbitrary constants.

35. <aPy+ P,Ps,Z+ P> (a>0): u=ux+ ¢p(w), w=mxy — axy,

(1 —a®)@ + Apy/a2p? +1) = 0.

If @« = 1 then ¢ = 0 and therefore the corresponding invariant solution of (1) is of the
form u =29 + C.

If a # 1 then
2_1 14 Oy exp(——w
o= (0} In 1 p(a2>\_1 ) +027
aA 1 — Crexp(zr7w)

where C7 > 0. The corresponding invariant solution of (1) is

2_ 1 1+ Ciex A (xo — ax
w= gt a In 1 P(az)\_l( 0 1)) o
a 1 — Crexp( = (w0 — ax1))

36. <aPy+ P,P3,Z+ P+ P> (a>0,8#£0):

u=1x2+ pw), w=mx9—ar — [y,

(1= ® = )5+ Apy/a2? + (1 - 5)? =0,
In this case the corresponding solution of (1) is of the form
ﬂ2 +a? -1 »
Aa? + (2
ro—ax1—Lx 3 3
| CrexpMEZEI (020 + 00 - ) — (O + 8)E 4 )
C(a? + %) (C4 eXP{l_;\fW_@} +1)

U= T +

Y

where C #0, C1#0, 1—a?—32#0.
3.7. <abPy+ P1, Py, P3,0(a)J12,0() )13, J2g >,
where o > 0,

o(la)=1 for a=0 and o(a) =0 for a#0:
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u=¢pw), w=xy—ar,
(1-a®)@g+ Aalglg = 0.
From the solutions of this reduced equation we obtain the following solutions of (1)

u = Cirxg+ Cy for a=0;

1— 2

u = a/\a In[aX(xg — axy) + C1] + Cy for 0 < a<1;
1—a?

U= ) In[a(ax; — zo) + C1] + Cy for a > 1.

38. <Jio+aZ, Py+ pJi2, Ps+~vJ12 > (a>0,6€ R,y >0):

L2
u = aarctan — — afrg — ayrs + p(w), w= x% + x%,
L1

4o + 4 + aBA/4wi? + a2wl +a2y? = 0.
For # = 0 we found that ¢ = Cj Inw + Cs. The corresponding solution of (1) is

u = q arctan T2 _ avyzs + Cq ln{x% + x%} + Ch.
1

3.9. < Ph+aZ Py+ Py, Ji2 >, where a=0,£1,6>0:

u = ary — afrs + p(w), w=ai+ a3,

dwP + 4 — al/dwp? + a2 32 = 0.
If 6=0, ¢ > 0 then the reduced equation is of the form
2w+ (2 — al/w)p = 0.
As far as
p = Crwte™VW,

then for a # 0 equation (1) has the solution

y
u:axo—l—Cl/e—dy—i—Cg, where y = a\\/2? + 23, C;>0.
Y

For g =0,¢ < 0 we found an analogous solution

y
u=azxy+ Ci / 6—aly + Cq, where y = —aX/z? +22, C; > 0.
Yy
For a = 0 the function u = C; In{z? + 23} + O3 is the solution of (1).
310 < Py, P3s+ Z,Ji12 > u=2a3+ p(w), w= x% + l‘%,

wp +¢o=0.
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It is easy to find that u = x5 + C1 In(z? + 23) + Ca.
311. < Py+aZ, Py, P3,Jog > (a=0,£1) : u=ax)+ ¢(w), w=x1,
@ — Aalg| =o.
The corresponding invariant solution is the function
u = axg+ CreTMN 4 Oy,
where aAC7 > 0.
312. <aPy+ P+ Z, Py, P3,Jo3 > (¢ €R): u=2z1 + ¢p(w), w =z — ary,
(1—a)p+ A1 —aplp=0.
If « = £1 then ¢ = +w + C and therefore u = +z¢ + C. Let o # 0 and « # £1. For

1 — ap > 0 we receive

21 A
= a In {1+aClexp< wﬂ + Co,
a\ a? —1

and for 1 —ap <0

2
@ In {1 + aCy exp ( A w)} + Cs.
1—a?

SO =
Hence equation (1.1) has the invariant solutions

a? -1

u=1x + In {1 + aC1 exp ( (zo — aml)ﬂ + Cs,

a? -1

2
Y n {1 — aCexp <

u =2+

)\_ 1 (xo — azl))] + Cs.

o’

The values of parameters and range of values xg,x1 are defined by positive expressions

under the logarithm sign.
For o = 0 we obtain the invariant solution

uU=x + Clef)‘xo + Cs.

3.13. < Ji9,J13,Jo3 > D < Py +aZ > (a = O,:l:l) :

u=ary+ e(w), w=/23+ 23+ 23,

G+ ¢ —Aalp| =0.
For ¢ > 0 we obtain

eaAw
30201/ dw+Cy, Cp>0.

w2

The corresponding invariant solution of (1) is of the form

e¥ eY
u = axg + ar(C] (_y -l—/ydy) +Cy, Cp >0,
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where y = aA\/z? + 23 + 23. For ¢») < 0 we obtain the invariant solution

ey e¥
u = axg + aACy <_y —|—/ydy> +Cy, C1 >0,

where y = —a\\/z? + 23 + 3.

3.14. < Py, P3, Jias+aD+3Z > (a>0,0€R):

x x
u = Barctan — + p(w), w = 2aarctan — — In(z? + 23),
1 Ty

p =0.
In this case ¢ = Ciw + Cs and therefore

u = [(arctan 24 Cq (Qa arctan —2 — In(z? + x%)) + .
x1 X1

3.15. < Py,D + adig, Jia+0Z > (a€R,(>0):

2 2
we 8 Infa? + 23} + Barctan 2 + p(w), w= S 0L2
2 I I3

2w(w+ 1)@+ (Bw +2)p = 0.

In this case we receive following invariant solution of (1):

[02 4 22 1 2

xy + x5 + 25 — |x3]

u= _ab In{z? + 23} —|—ﬂarctaunﬂ +Ciln L2 + Cs.
2 1 \/ 22 + 23 + 23 — |3

3.16. < Py, J12,D+aZ> (a€R):

2 2

« x| +x

uziln{x%—kxg}—kgo(w), w= 11'2 2
3

2w(w+ 1)@+ (Bw +2)p = 0.

The corresponding invariant solution of (1) is of the form

/22 + 23 + 23 — |3
/23 + 23 + 23 + |23

317. <vPy+ P3,D +aJig, Z+ > (@ €R,5>0,7>0):

u= %ln{x%—i—x%}—i—Clln + Os.

a:%—l—x%

(6%
(930 - 7553)2’

u = [ arctan 2 25 In{z? + 23} + p(w), w=

x1

4w((1 =) = D@+ (6(1 = 7*)w — 4)p—

25)\w¢\/4w(1 +72w) @2 — dadp + 32(1 4 a2)w=1 =0,
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where € = sign (zg — yx3).
3.18. < BPy+ Ps,J12,D+aZ > (aER,ﬂZO):

ﬂ?%+l‘%

(g — Bxs)?’

(4(1 = Hw? — w)@ + (6(1 — *)w — 4)p—

u = %ln{x% + 23} + p(w), w=

2ewA\ /4w (L + F2w)¢2 + dagp + aZwl =0,
where € = sign (zg — fz3).

3.19. < Py, P3,Jog, D + aZ > (a € R) :

u=alnzy+ p(w), wzﬂ,
o

(w2 = 1)¢ + 20+ Algl(a — wp) — a = 0.
For o = 0 and A\ > 0 we obtain the solution

2
u:ﬂ—k(], xo > 0.
)\xo

3.20. < Ji9,J13,Jo3, D + aZ > (Oé S R) :

i+ 23 + a3

u=alnzy+ pw), 22

Y

dw(w—1)p+6(w—1)p + 22V/w(a — 2we)|p| — a = 0.
For a =0 and ¢ > 0 we find that

lwo

e _dw+C
“—‘P_/A1n|‘;_fl|+c1 v

4 Reduction of (1) to differential equations having
two independent variables

4.1. < Py, Py > u=p(w,w), w =z, wy= T2,

©11 + 22 = 0.

42. <aPy+ P, Ps> (a>0): u=p(w, wr), w1 =x9— a1, wy = T,

(1 —a®)p11 — @22 + Ap1y/a2¢? + @3 = 0.

43. < Py,D+aZ>(a€R):
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4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

T xT9
u=alnzz+p(w,w), wi=—, wy=—,
T3 T3

(1 4+ wd)p11 + (1 + w3)pae + 2wiwapra + 2wip1 + 2wape — a = 0.
<aPy+P,D+pBZ>(a>0,0€R):

Trog — QX T2
u=pFlnxs+ p(w,w), w =—"—, wy=—,
x3 x3

(1- a? — w%)gpll - (14 w%)tpgg — 2wiwap1a — 2w —

2w + B + A@l\/a%% + 93+ (B — wipr —w2p2)? = 0.
<aPy+ P, Po+pZ > (a>0,0==1):

u = frg— afrs+ p(w,w2), wi =21, wr =T,

9011+<P22—>\5\/042ﬂ2+80%+80%:0‘
<aPy+P,Z+pPPy+P,> (>0, BER):

u =13+ p(w,wa), wi=zg—ar; —Pr2, wp=2a3,

(1—a? =311 — 2 + )\<P1\/042<P% + (1= Bp1)? + 93 = 0.
<Py, Z+ P3> u=uz3+pw,w), wi =1z, wr==2T,
p11 + @22 = 0.
< Py, Jis+aD+pZ > (a,f €R):

2 2

T2 T] + x5

u = Barctan — + (w1, w2), w1 = 3
I x5

x
wy = 2cvarctan — + In(x? + 23),
Z2

201 (1 4+ w11 + 2(1 + a2)wf1<,022 +4p12+ (24 3wr)p1 = 0.
<aPy+ Ps,Jio+pBD+~Z> (>0, >0, yER):

T2 :c% + m%
u = yarctan — + p(w1,ws), W1 =,
x1 (xo — axs)

x
wy = 2Barctan — — In(z3 + 23),
{a

4w (1 — @®)wy — 1)p11 — 4(1 + 2wy oot

8p12 + (6(1 — a2)w1 —4)p1 — 2edwi 1 X
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VAwr(1+ a2un) @} +4(1+ 2)wr 03 — Bprps +4Bywr s + 72wy = 0,
where ¢ =sign(zo — axs).
4.10. < Py, P3,Jog > u= p(wi,ws), w1 =x0, wy =11,
V11 — 22 + Ap1|p2| = 0.

411. <aPy+ P3,Jio+ P+ 52> (>0, BER):

1 2 2
u = fxy— afrs+ p(w,w), wi =xo—arg+arctan —, wy = x]+ T3,
x2

(1 —a? —wy Mp11 — dwapas — 4o+

)\\/(oz2 +wy ) p? + dwapd + 20261 + a252(B 4 ¢1) = 0.

4.12. < Py, Jio+ Ps+aZ > (a > 0) :

x1
u=azx3+ p(w,ws), w= x% + :1:%, w9 = arctan — + x3,
2

dorpi1 + (1+wi Hpan + 4p1 =0,
4.13. < J12, J13’ J23 > ou = (p(wth), w1 = o, W = x% + .’L‘% + 1’%7
11 — dwapas — 62 + 2A\/wap1|pa] = 0.

4.14. < P+ aZ,Jio + PPy +vPs > (Oé::tl, 6>0, ’YGR)Z

x
u = axg + af arctan 24 o(wy,wa),
T2

2 2 1
w1 =] +25, wo=x3+yarctan —,
T2

dwr 11 + (14 72wy ) + 41—

M/ dwi? + (1 + 72wy )gd + 208701 o2 + a2yt = 0.
4.15. <aPy+ Ps+ Z,J1o+ BPy+~vP3 >, where o,8,vy€ R and 3>0:

T
u = x3 + yarctan — + (w1, wa),
x2

Z1
wy =23+ 23, wy = 1x0 — axs + (8 — ay)arctan —,
Z2

dwip1n + (02 =1+ (B — ay)?wi oo + 41—

Np2y/4wn? + (2 + (8 — an)2wi ) + 2—a+ (6 — ar)ywr s + 1 +72w; ! =0,
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4.16. < Jigo+aZ, D+ pJ12> (>0, BER):

T
u = o arctan —2 — aflnzy+ p(wi,ws),

x1
x% + x% r3
w1 = 2 y W2 = —,

4w (w1 — 1)g11 + (W3 — 1)@an + dwiwapra + (bwi — 4)@1 + 2waips + af—

>‘\/4W1<P% + ©3 + a?wi (2wt + wagps + af) = 0.

417 < Jig,D+aZ > (a#0): u=alnzs+ p(w,ws),

x% + IL‘% T3
w1 = 2 , W2 = )

4wy (w1 — D11 + (w% — D)oo + dwiwapra + (6wy — 4)p1 + 2waps + awZ_Q—

)\5\/4w1<p% + 03 + 20wy Lpa + 2wy 2 (2w1p1 + waws) = 0,

where € =sign xg.

5 Reduction of (1) to differential equations having
three independent variables

51. < P> u=¢pw,w,ws), wi =, wy==Ty ws=I3,

©11 + p22 + @33 = 0.
52. <aPy+ P > (OJZO):

u = p(w,w,w3), W ==T9— T, Wy =T2,ws=I3,

(1—a®)p11 — 22 — 33 + )\901\/04290% + 5+ 93 =0.
53. <D+4+aZ>(a€R): u=alnzy+ p(w,ws,ws),

X1 i) I3
w1 = —, W2 = —, w3 = —,
Zo Zo Zo

(wf — D11 + (w% — 1) + (w§ — 1)p33 + 2wi1 + 2wapa + 2wsps — a—
M/l + @3 + 3(wipr + waps + waps —a) = 0.
54. < Z+4+aPy>(a==%1): u=alnzy+ p(wi,ws,ws),

w1 =21, wW2=1322, W3=12I3,
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P11 + P22 + P33 —Oé)\\/SO% + 3 +90§ =0.

5.5. < Z+aPy+ P, > (a S R) u=1x +<p(w1,w2,w3),

W1 =g —ar;, w2=1=I2, W3=UI3,

(1—a?)p11 — o2 — @33+ )\<P1\/a2<p% + %+ % —2ap1 +1=0.

56. < Jio+aD+3Z >, where a >0, 3€R or a=0, 8>0:

T
u = [ arctan 2 + CP(W17W27W3)>

I
2., .2
7+ T3 T2
w = 5 2 wy="=, ws=2carctan — — In(x? + 23),
xg i) I

dwi (w1 — D11 + (W5 — 1)pas — 4(1 + a®)wi Hpgs+

dwiwopra + 8p13 + (6w — 4)p1 + 2wapy — Aex

\/4w1g0% + 03+ 4(1 + a?)wi 193 — 8p1p3 + dafwi tps + BRwi x
(2w11 + wagpa) = 0,
where € =sign xg.

5.7. < Jis+ Py+aZ >(a€R): u=axy+ p(w,ws,ws),

r1
w1 = g + arctan —2, wo = x% + x%, w3 = I3,
T

(1 —wy )11 — dwopar — 33 — dpa + )\\/wg_l@% + dwas + p3(a+ 1) = 0.
5.8. < Jpo+aPy+ Ps+(6Z >, where >0, R or a=0, 6>0:
u = frs + p(wi,we,w3), w1 = To— T3,

2 2 L1
wg = x] + 25, w3 = arctan — + x3,
T2

(1 — a®)p11 — dwapaz — (1 4wy M pss — 4pa + 2013+

A«pl\/azso% + dwapd + (1 4+ wy ed — 200103 + B2 — 20801 + 52 + 263 = 0.
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6 Multiplying the solutions

Let (c;j) be an orthogonal matrix of order three and do, d;(j = 1,2,3) be arbitrary real
numbers. If u = f(xzg, z1, 22, 3) is a solution of (1) then the function

u = ef(Ayo, Ay1, Ayo, Ays) + B, (7)

(here ¢ = £1,yo = xo+do,y; = Y cijxj+d;; A, B are arbitrary real numbers and moreover
A > 0,(i,7 = 1,2,3) is also the solution of this equation. All solutions of (1), obtained
from the solution u = f(xg,z1,z2,x3), as a result of application of transformations from
the symmetry group (with the Lie algebra F') of this equation, are exhausted by functions
of the form (6.1). Because the formula (6) is not concerned with the structure of the
solution, it is impossible to state that all solutions of (1) obtained by means of (6) are
different. For example, homogeneous transformations corresponding to matrix

cosp —singp 0
sing cosp 0
0 0 1

do not change the solution u = In{x? 4+ x3}. According to what has been said, it is also
necessary to utilize formulae obtained for some sets of solutions in addition to (6).

If u = f(zo,7? + 23 + 23), then as a result of multiplying it, it is possible to receive
only solutions of the following form:

u=cf(Ayo, A*(y} + v5 +13)) + B,

where y; = z; + d;, (1 = 0,1,2,3). All the solutions obtained by multiplying solution
u = f(zo,2? + 23, x3) could be represented in the form

u=ef(Ayo, A*(y7 +y3), Ays)) + B,
where e = +1, A, B are arbitrary real numbers, and A > 0, yo = xo + do,
y% + y% = [x1cosp — xasinp + dl]2 + [(z18in @ + z2 cos @) cos ) — —x3sin + d2]2,
Y3 = x1 sinwsiny + x4 siny cos ¢ + x3cos Y + ds.

Here dy,d1,ds,ds are arbitrary real numbers, and the parameters ¢, accept arbitrary
values in the interval [0, 2m).
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