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Abstract

The subalgebras of the invariance algebra of equation 2u+λ(u2
1+u2

2+u2
3)

1/2u0 = 0 are
described with respect to the conjugation. Reduction of this equation to a differential
equation in a less number of independent variables is implemented by means of every
subalgebra from the obtained list.

1 Introduction

The wide class of nonlinear wave equations which are invariant under the Euclidean groups
are described in [1]. One such equation has the form [1]

∂2u

∂x2
0

− ∂2u

∂x2
1

− ∂2u

∂x2
2

− ∂2u

∂x2
3

+ λ

[(
∂u

∂x1

)2

+
(
∂u

∂x2

)2

+
(
∂u

∂x2

)2
]1/2

∂u

∂x0
= 0. (1)

This equation is invariant under the Lie algebra F generated by the following vector fields

P0 =
∂

∂x0
, Pa =

∂

∂xa
, Jab = xa

∂

∂xb
− xb

∂

∂xa
,

D = x0
∂

∂x0
+ xa ∂

∂xa
, Z =

∂

∂u
(a < b; a, b = 1, 2, 3).

Fushchych and Serova [1] have investigated the symmetry reduction of equation (1)
with one-dimensional subalgebras of the algebra F and have found some exact solutions
of this equation. These results have also been presented in the book [2].

Equation (1) is invariant under the mapping (x0, x1, x2, x3, u) → (x0,−x1, x2, x3, u).
By carrying out the symmetry reduction we can consider subalgebras of the algebra
F with respect to the conjugation defined by the group G, generated both by inner
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automorphisms of the algebra F and the automorphism

P0 → P0, P1 → −P1, P2 → P2, P3 → P3, D → D,

Z → Z, J12 → −J12, J13 → −J13, J23 → J23.

Here the complete list of subalgebras of the algebra F are obtained with respect to
G-conjugation and symmetry reductions of equation (1) are done on all subalgebras from
this list. Also, new invariant solutions of this equation are found. Concepts and results of
group analysis of differential equations can be found in the books of Ovsyannikov [3] and
Olver [4].

Let L be a subalgebra of the algebra F and the rank of L be equal to r, 1 ≤ r ≤ 3,
with k = 4− r. We shall designate by ω1, . . . , ωk, ωk+1 a complete system of functionally
independent invariants of the subalgebra L. Here we assume that the invariant ωk+1

depends on u and other invariants do not depend on u. Notation L =< X1, . . . , Xs >
denotes that X1, . . . , Xs are generators of the algebra L. We shall designate the sequence
of algebras V1+)K, . . . , Vm+)K by K : V1, . . . , Vm.

An ansatz corresponding to the subalgebra L has the form

ωk+1 = ϕ(ω1, . . . , ωk). (2)

Let

ϕa =
∂ϕ

∂ωa
, ϕab =

∂2ϕ

∂ωa∂ωb
.

For k = 1 we shall write ω instead of ω1, ϕ̇ — instead of ϕ1 and ϕ̈ — instead of ϕ11.
For any given subalgebra of the algebra F after colon we point out the corresponding

ansatz (2), solved with respect to u in terms of invariants ω1, . . . , ωk, as well as the reduced
equation received by means of the given ansatz from equation (1). We shall presuppose
that λ 6= 0.

2 Classification of subalgebras of the invariance algebra

Symmetry reductions are realizable only when a subalgebra has an invariant which de-
pendent on u. In connection with that one should consider only those subalgebras of the
algebra F , which do not contain Z. As a representative of the class of subalgebras, which
have with the respect to G-conjugation the same invariants, we shall take the subalgebra,
which is not contained in any other subalgebra with this property. We call this subalgebra
the I-maximal one. It is defined uniquely with respect to G-conjugation.

For description of subalgebras of the algebra F we use the general method suggested
by Patera, Winternitz and Zassenhaus [5] and supplemented by series of structural propo-
sitions in the book of Fushchych et al. [6].

Using the Lie-Goursat classification method for subalgebras of algebraic sums of Lie
algebras [5, 6], we obtain that non-zero subalgebras of the algebra AO(3)⊕ < D,Z > are
exhausted with respect to inner automorphisms by the following subalgebras:

< D + αZ > (α ∈ R); < Z >; < D,Z >;
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< J12 + αD + βZ >; < J12 + αZ,D + βZ >; < J12, Z >;

< J12, D, Z >, α, β ∈ R; (3)

AO(3);AO(3)⊕ < D + αZ >;AO(3)⊕ < Z >;AO(3)⊕ < D,Z > .

Let K be one of the subalgebras (3) and K̂ be such a subalgebra of the algebra F
that its projection onto AO(3)⊕ < D,Z > coincides with K. If the projection of K onto
< D > is non-zero, K annules the only zero subspace of the space U =< P0, P1, P2, P3 >.
Let us assume that Z 6∈ K. Then K could be considered as a completely reducible algebra
of linear transformation of the space U . In accordance with theorem 1.5.3 [6], algebra
K̂ is conjugated with the algebra of the form V+)K, where V ⊂ U . If Z ∈ K, then
K =< Z > ⊕K1. In accordance with the above arguments, K̂ is conjugated with the
algebra of the form (V+ < Z +X >)+)K1 where V ⊂ U and X ∈ U . Using proposition
1.2.2 [6] we conclude that X ∈ V . Therefore it is possible to assume that X = 0.

If the projection K onto < D > is zero, then K̂ is a subalgebra of the direct sum
AE(3)⊕ < P0, Z >. Non-zero subalgebras of the algebra AO(3)⊕ < P0, Z > are exhausted
with respect to inner automorphisms by subalgebras, which can be obtained as a result
of the formal substitution D onto P0 in the subalgebras (3). To classify subalgebras of
the algebra < P1, P2, P3 > ⊕ < P0, Z >, one should use the Lie-Goursat classification
method and Witt’s mapping theorem [7]. Let π(K) be the projection K onto AO(3). If
π(K) =< J12 >, then because of the theorems 1.5.3 and III.4.1 [6] algebra K̂ contains,
with respect to conjugation, its own projection onto < P1, P2 >. If π(K) = AO(3) then
its own AO(3) ⊂ K̂ and K̂ contains its own projection onto < P1, P2, P3 > .

According to what has been said, it is not difficult to see that non-zero I-maximal
subalgebras of the algebra F are exhausted with respect to G-conjugation by subalgebras:

A. Subalgebras having zero projections onto AO(3):

< P0 >,< αP0 + P1 >,< P0, P1 >,< βP0 + P1, P2 >,

where α > 0, β > 0;

< D + αZ >: 0, < P0 >,< βP0 + P1 >,< P0, P1 >,< γP0 + P1, P2 >,

where α, β, γ ∈ R and β ≥ 0, γ > 0;

< Z ± P0 >: 0, < αP0 + P1 >,< βP0 + P1, P3 >,

where α > 0, β ≥ 0;

< Z + αP0 + P2 >: 0, < βP0 + P1 >,< γP0 + P1, P3 >,

where α, β, γ ∈ R and β ≥ 0, γ > 0;

< Z + P1 >:< P0 >,< P0, P3 > .

B. Subalgebras having zero projections onto < D,Z > and having non-zero projections
onto AO(3):

< J12 >: 0, < P0 >,< αP0 + P3 >,< P0, P3 >,< P1, P2 >,
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< P0, P1, P2 >,< βP0 + P3, P1, P2 >,

where α ≥ 0, β > 0;

< J12 + P0 >: 0, < αP0 + P3 > (α ≥ 0);

< J12 + αP0 + P3 > (α ≥ 0);< J12 + P3, P0 >;

< J12, J13, J23 >: 0, < P0 >,< P1, P2, P3 >,< P0, P1, P2, P3 > .

C. Subalgebras having zero projections onto < D > and having non-zero projections onto
AO(3) and < Z >:

< J12 + αZ >: 0, < P0 >,< βP0 + P3 >,< P0, P3 >,

where α > 0, β ≥ 0;

< J12 + P0 + αZ >: 0, < βP0 + P3 >,

where α 6= 0, β ≥ 0;

< J12 + αP0 + P3 + βZ > (α ∈ R, β > 0);

< J12 + P3 + αZ,P0 > (α > 0);

< J12 >:< P0 + αZ, P1, P2 >,< βP0 + P3 + Z,P1, P2 >,

< P0 + αZ,P3 + γP0, P1, P2 >,< P0, P3 + Z,P1, P2 >,

where α = ±1, β ∈ R, γ > 0;

< P0 + αZ, J12 + βP0 + γP3 >,

where α = ±1, β > 0, γ ∈ R or α = ±1, β = 0, γ ≥ 0;

< αP0 + P3 + Z, J12 + βP0 + γP3 >,

where α, β, γ ∈ R and β > 0 or β = 0, γ ≥ 0;

< P0 + αZ,P3 + βP0, J12 + γP0 >,

where α = ±1, β ≥ 0, γ ≥ 0;

< P0, P3 + Z, J12 + αP3 > (α ≥ 0);

< J12, J13, J23 >:< P0 + αZ >,< P0 + αZ,P1, P2, P3 > (α = ±1).

D. Subalgebras having non-zero projections onto AO(3) and < D >:

< J12 + αD + βZ >: 0, < P0 >,< γP0 + P3 >,< P0, P3 >,

where α, β, γ ∈ R and α > 0, γ ≥ 0;

< J12 + αZ,D + βZ >: 0, < P0 >,< γP0 + P3 >,< P0, P3 >,
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where α, β, γ ∈ R and α ≥ 0, γ ≥ 0;

< J12, D + αZ > +) < P1, P2 >, (α ∈ R);

< J12, D + αZ >:< P0, P1, P2 >,< βP0 + P3, P1, P2 >,

where α 6= 0, β > 0;

< J12, J13, J23, D + αZ > (α ∈ R);

< J12, J13, J23, D + αZ >:< P0 >,< P1, P2, P3 > (α 6= 0);

< J12, J13, J23, D, P0, P1, P2, P3 > .

We note that the subalgebras of maximal rank three are used for our reduction.

3 The reduction of (1) to ordinary differential equations

3.1. < P0, P3, D + αZ > (α ∈ R) : u =
α

2
ln{x2

1 + x2
2}+ ϕ(ω), ω =

x1

x2
,

(1 + ω2)ϕ̈+ 2ωϕ̇ = 0.

In this case ϕ = C1 arctanω + C2 and therefore

u =
α

2
ln{x2

1 + x2
2}+ C1 arctan

x1

x2
+ C2,

where C1 and C2 are arbitrary constants.

3.2. < αP0 + P1, P3, D + βZ > (α > 0, β ∈ R) :

u = β lnx2 + ϕ(ω), ω =
x2

x0 − αx1
,

[(1− α2)ω2 − 1]ϕ̈+ 2(1− α)ωϕ̇−

ελω
√
α2ω2ϕ̇2 + (βω−1 + ϕ̇)2ϕ̇+ βω−2 = 0, (4)

where ε = sign (x0 − α1x).
Let β = 0. Then equation (4) is of the form

[(1− α2)ω2 − 1]ϕ̈+ 2(1− α)ωϕ̇− ελω
√
α2ω2 + 1|ϕ̇|ϕ̇ = 0. (5)

For α = 1 and ϕ̇ > 0 we obtain that

ϕ̇ =
3

ελ(ω2 + 1)
3
2 + C̃

.

If C̃ = 0 then

ϕ =
3

ελ(ω2 + 1)
1
2

+ C.
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The function

u =
3
λ

x2√
(x0 − x1)2 + x2

2

+ C,

where x0 − x1 > 0 for λ > 0 and x0 − x1 < 0 for λ < 0 is the corresponding invariant
solution of (1).

For α = 1 and ϕ̇ < 0 we receive the solution

u = − 3
λ

x2√
(x0 − x1)2 + x2

2

+ C,

where λ(x0 − x1) > 0.
Let α 6= 1 and ϕ > 0. The substitution ψ = 1/ϕ̇ transforms (5) into the linear equation

[(1− α2)ω2 − 1]ψ̇ − 2(1− α2)ωψ + ελω
√
α2ω2 + 1 = 0. (6)

If

1
1− α2

= ρ2,

then the function

ψ =
λα2ε

(1− α2)2
[1 + (α2 − 1)ω2]

{
1
4ρ

ln

∣∣∣∣∣
√
α2ω2 + 1− ρ√
α2ω2 + 1 + ρ

∣∣∣∣∣−
√
α2ω2 + 1

2(α2ω2 + 1− ρ2)
+ C1

}

is the general solution of (6). If

1
1− α2

= −ρ2,

then the general solution of (6) is

ψ =
λα2ε

(1− α2)2
[1 + (α2 − 1)ω2]

{
−

√
α2ω2 + 1

2(α2ω2 + 1 + ρ2)
+

1
2ρ

arctan
√
α2ω2 + 1
ρ

+ C1

}
.

In every of the cases the solution of (1) is of the form

ϕ =
∫
dω

ψ
+ C2, and u = ϕ(ω).

3.3. < αP0 + P1, P3, Z + βP0 > (α > 0, β = ±1) :

u = βx0 − αβx1 + ϕ(ω), ω = x2,

ϕ̈− βλ
√
α2 + ϕ̇2 = 0.

It is easy to find that

ϕ̇ =
C2e2λβω − α2

2Ceλβω
(C 6= 0)
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and therefore

ϕ = C1e
λβω +

α2

4λ2C1
e−λβω + C2,

u = βx0 − αβx1 + C1e
λβx2 +

α2

4λ2C1
e−λβx2 + C2, C1 6= 0.

3.4. < P0, P3, Z + P1 >: u = x1 + ϕ(ω), ω = x2, ϕ̈ = 0.

The corresponding invariant solution of (1) is of the form u = x1 +C1x1 +C2 , where
C1 and C2 are arbitrary constants.

3.5. < αP0 + P1, P3, Z + P2 > (α > 0) : u = x2 + ϕ(ω), ω = x0 − αx1,

(1− α2)ϕ̈+ λϕ̇
√
α2ϕ̇2 + 1) = 0.

If α = 1 then ϕ̇ = 0 and therefore the corresponding invariant solution of (1) is of the
form u = x2 + C.

If α 6= 1 then

ϕ =
α2 − 1
αλ

ln

∣∣∣∣∣1 + C1 exp( λ
α2−1

ω)

1− C1 exp( λ
α2−1

ω)

∣∣∣∣∣ + C2,

where C1 > 0. The corresponding invariant solution of (1) is

u = x2 +
α2 − 1
αλ

ln

∣∣∣∣∣1 + C1 exp( λ
α2−1

(x0 − αx1))

1− C1 exp( λ
α2−1

(x0 − αx1))

∣∣∣∣∣ + C2.

3.6. < αP0 + P1, P3, Z + βP0 + P2 > (α > 0, β 6= 0) :

u = x2 + ϕ(ω), ω = x0 − αx1 − βx2,

(1− α2 − β2)ϕ̈+ λϕ̇
√
α2ϕ̇2 + (1− βϕ̇)2 = 0.

In this case the corresponding solution of (1) is of the form

u = x2 +
β2 + α2 − 1
λ
√
α2 + β2

×

ln
C1 exp{λ(x0−αx1−βx2)

1−α2−β2 }(C2(α2 + β2)
3
2 − β)− (C2(α2 + β2)

3
2 + β)

C(α2 + β2)(C1 exp{ λω
1−α2−β2 }+ 1)

,

where C 6= 0, C1 6= 0, 1− α2 − β2 6= 0.

3.7. < αP0 + P1, P2, P3, σ(α)J12, σ(α)J13, J23 >,

where α ≥ 0,

σ(α) = 1 for α = 0 and σ(α) = 0 for α 6= 0 :
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u = ϕ(ω), ω = x0 − αx1,

(1− α2)ϕ̈+ λα|ϕ̇|ϕ̇ = 0.

From the solutions of this reduced equation we obtain the following solutions of (1)

u = C1x0 + C2 for α = 0;

u =
1− α2

αλ
ln[αλ(x0 − αx1) + C1] + C2 for 0 < α ≤ 1;

u =
1− α2

αλ
ln[αλ(αx1 − x0) + C1] + C2 for α > 1.

3.8. < J12 + αZ,P0 + βJ12, P3 + γJ12 > (α > 0, β ∈ R, γ ≥ 0) :

u = α arctan
x2

x1
− αβx0 − αγx3 + ϕ(ω), ω = x2

1 + x2
2,

4ωϕ̈+ 4ϕ̇+ αβλ
√

4ωϕ̇2 + α2ω−1 + α2γ2 = 0.

For β = 0 we found that ϕ = C1 lnω + C2. The corresponding solution of (1) is

u = α arctan
x2

x1
− αγx3 + C1 ln{x2

1 + x2
2}+ C2.

3.9. < P0 + αZ,P3 + βP0, J12 >, where α = 0,±1, β ≥ 0 :

u = αx0 − αβx3 + ϕ(ω), ω = x2
1 + x2

2,

4ωϕ̈+ 4ϕ̇− αλ
√

4ωϕ̇2 + α2β2 = 0.

If β = 0, ϕ̇ > 0 then the reduced equation is of the form

2ωϕ̈+ (2− αλ
√
ω)ϕ̇ = 0.

As far as

ϕ̇ = C1ω
−1eαλ

√
ω,

then for α 6= 0 equation (1) has the solution

u = αx0 + C1

∫
ey

y
dy + C2, where y = αλ

√
x2

1 + x2
2, C1 > 0.

For β = 0, ϕ̇ < 0 we found an analogous solution

u = αx0 + C1

∫
ey

y
dy + C2, where y = −αλ

√
x2

1 + x2
2, C1 > 0.

For α = 0 the function u = C1 ln{x2
1 + x2

2}+ C2 is the solution of (1).

3.10 < P0, P3 + Z, J12 >: u = x3 + ϕ(ω), ω = x2
1 + x2

2,

ωϕ̈+ ϕ̇ = 0.
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It is easy to find that u = x3 + C1 ln(x2
1 + x2

2) + C2.

3.11. < P0 + αZ,P2, P3, J23 > (α = 0,±1) : u = αx0 + ϕ(ω), ω = x1,

ϕ̈− λα|ϕ̇| = 0.

The corresponding invariant solution is the function

u = αx0 + C1e
±αλx1 + C2,

where αλC1 ≥ 0.

3.12. < αP0 + P1 + Z,P2, P3, J23 > (α ∈ R) : u = x1 + ϕ(ω), ω = x0 − αx1,

(1− α)ϕ̈+ λ|1− αϕ̇|ϕ̇ = 0.

If α = ±1 then ϕ = ±ω + C and therefore u = ±x0 + C. Let α 6= 0 and α 6= ±1. For
1− αϕ̇ > 0 we receive

ϕ =
α2 − 1
αλ

ln
[
1 + αC1 exp

(
λ

α2 − 1
ω

)]
+ C2,

and for 1− αϕ̇ < 0

ϕ =
1− α2

αλ
ln

[
1 + αC1 exp

(
λ

1− α2
ω

)]
+ C2.

Hence equation (1.1) has the invariant solutions

u = x1 +
α2 − 1
αλ

ln
[
1 + αC1 exp

(
λ

α2 − 1
(x0 − αx1)

)]
+ C2,

u = x1 +
1− α2

αλ
ln

[
−1− αC1 exp

(
λ

α2 − 1
(x0 − αx1)

)]
+ C2.

The values of parameters and range of values x0, x1 are defined by positive expressions
under the logarithm sign.

For α = 0 we obtain the invariant solution

u = x1 + C1e
−λx0 + C2.

3.13. < J12, J13, J23 > ⊕ < P0 + αZ > (α = 0,±1) :

u = αx0 + ϕ(ω), ω =
√
x2

1 + x2
2 + x2

3,

ϕ̈+ ϕ̇− λα|ϕ̇| = 0.

For ϕ̇ > 0 we obtain

ϕ = C1

∫
eαλω

ω2
dω + C2, C1 > 0.

The corresponding invariant solution of (1) is of the form

u = αx0 + αλC1

(
−e

y

y
+

∫
ey

y
dy

)
+ C2, C1 > 0,
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where y = αλ
√
x2

1 + x2
2 + x2

3. For ϕ̇ < 0 we obtain the invariant solution

u = αx0 + αλC1

(
−e

y

y
+

∫
ey

y
dy

)
+ C2, C1 > 0,

where y = −αλ
√
x2

1 + x2
2 + x2

3.

3.14. < P0, P3, J12 + αD + βZ > (α > 0, β ∈ R) :

u = β arctan
x2

x1
+ ϕ(ω), ω = 2α arctan

x2

x1
− ln(x2

1 + x2
2),

ϕ̈ = 0.

In this case ϕ = C1ω + C2 and therefore

u = β arctan
x2

x1
+ C1

(
2α arctan

x2

x1
− ln(x2

1 + x2
2)

)
+ C2.

3.15. < P0, D + αJ12, J12 + βZ > (α ∈ R, β > 0) :

u = −αβ
2

ln{x2
1 + x2

2}+ β arctan
x2

x1
+ ϕ(ω), ω =

x2
1 + x2

2

x2
3

,

2ω(ω + 1)ϕ̈+ (3ω + 2)ϕ̇ = 0.

In this case we receive following invariant solution of (1):

u = −αβ
2

ln{x2
1 + x2

2}+ β arctan
x2

x1
+ C1 ln

∣∣∣∣∣∣
√
x2

1 + x2
2 + x2

3 − |x3|√
x2

1 + x2
2 + x2

3 − |x3|

∣∣∣∣∣∣ + C2.

3.16. < P0, J12, D + αZ > (α ∈ R) :

u =
α

2
ln{x2

1 + x2
2}+ ϕ(ω), ω =

x2
1 + x2

2

x2
3

,

2ω(ω + 1)ϕ̈+ (3ω + 2)ϕ̇ = 0.

The corresponding invariant solution of (1) is of the form

u =
α

2
ln{x2

1 + x2
2}+ C1 ln

∣∣∣∣∣∣
√
x2

1 + x2
2 + x2

3 − |x3|√
x2

1 + x2
2 + x2

3 + |x3|

∣∣∣∣∣∣ + C2.

3.17. < γP0 + P3, D + αJ12, Z + β−1J12 > (α ∈ R, β > 0, γ ≥ 0) :

u = β arctan
x2

x1
− αβ

2
ln{x2

1 + x2
2}+ ϕ(ω), ω =

x2
1 + x2

2

(x0 − γx3)2
,

4ω((1− γ2)ω − 1)ϕ̈+ (6(1− γ2)ω − 4)ϕ̇−

2ελωϕ̇
√

4ω(1 + γ2ω)ϕ̇2 − 4αλϕ̇+ β2(1 + α2)ω−1 = 0,
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where ε = sign (x0 − γx3).

3.18. < βP0 + P3, J12, D + αZ > (α ∈ R, β ≥ 0) :

u =
α

2
ln{x2

1 + x2
2}+ ϕ(ω), ω =

x2
1 + x2

2

(x0 − βx3)2
,

(4(1− β2)ω2 − 4ω)ϕ̈+ (6(1− β2)ω − 4)ϕ̇−

2εωλϕ̇
√

4ω(1 + β2ω)ϕ̇2 + 4αϕ̇+ α2ω−1 = 0,

where ε = sign (x0 − βx3).

3.19. < P2, P3, J23, D + αZ > (α ∈ R) :

u = α lnx0 + ϕ(ω), ω =
x1

x0
,

(ω2 − 1)ϕ̈+ 2ωϕ̇+ λ|ϕ̇|(α− ωϕ̇)− α = 0.

For α = 0 and λ > 0 we obtain the solution

u =
2x1

λx0
+ C, x0 > 0.

3.20. < J12, J13, J23, D + αZ > (α ∈ R) :

u = α lnx0 + ϕ(ω), ω =
x2

1 + x2
2 + x2

3

x2
0

,

4ω(ω − 1)ϕ̈+ 6(ω − 1)ϕ̇+ 2λ
√
ω(α− 2ωϕ̇)|ϕ̇| − α = 0.

For α = 0 and ϕ̇ > 0 we find that

u = ϕ =
∫

ω
3
2

λ ln | ω
ω−1 |+ C1

dω + C2.

4 Reduction of (1) to differential equations having
two independent variables

4.1. < P0, P3 >: u = ϕ(ω1, ω2), ω1 = x1, ω2 = x2,

ϕ11 + ϕ22 = 0.

4.2. < αP0 + P1, P3 > (α > 0) : u = ϕ(ω1, ω2), ω1 = x0 − αx1, ω2 = x2,

(1− α2)ϕ11 − ϕ22 + λϕ1

√
α2ϕ2

1 + ϕ2
2 = 0.

4.3. < P0, D + αZ > (α ∈ R) :
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u = α lnx3 + ϕ(ω1, ω2), ω1 =
x1

x3
, ω2 =

x2

x3
,

(1 + ω2
1)ϕ11 + (1 + ω2

2)ϕ22 + 2ω1ω2ϕ12 + 2ω1ϕ1 + 2ω2ϕ2 − α = 0.

4.4. < αP0 + P1, D + βZ > (α ≥ 0, β ∈ R) :

u = β lnx3 + ϕ(ω1, ω2), ω1 =
x0 − αx1

x3
, ω2 =

x2

x3
,

(1− α2 − ω2
1)ϕ11 − (1 + ω2

2)ϕ22 − 2ω1ω2ϕ12 − 2ω1ϕ1−

2ω2ϕ2 + β + λϕ1

√
α2ϕ2

1 + ϕ2
2 + (β − ω1ϕ1 − ω2ϕ2)2 = 0.

4.5. < αP0 + P3, P0 + βZ > (α ≥ 0, β = ±1) :

u = βx0 − αβx3 + ϕ(ω1, ω2), ω1 = x1, ω2 = x2,

ϕ11 + ϕ22 − λβ
√
α2β2 + ϕ2

1 + ϕ2
2 = 0.

4.6. < αP0 + P1, Z + βP0 + P2 > (α ≥ 0, β ∈ R) :

u = x2 + ϕ(ω1, ω2), ω1 = x0 − αx1 − βx2, ω2 = x3,

(1− α2 − β2)ϕ11 − ϕ22 + λϕ1

√
α2ϕ2

1 + (1− βϕ1)2 + ϕ2
2 = 0.

4.7. < P0, Z + P3 >: u = x3 + ϕ(ω1, ω2), ω1 = x1, ω2 = x2,

ϕ11 + ϕ22 = 0.

4.8. < P0, J12 + αD + βZ > (α, β ∈ R) :

u = β arctan
x2

x1
+ ϕ(ω1, ω2), ω1 =

x2
1 + x2

2

x2
3

,

ω2 = 2α arctan
x1

x2
+ ln(x2

1 + x2
2),

2ω1(1 + ω1)ϕ11 + 2(1 + α2)ω−1
1 ϕ22 + 4ϕ12 + (2 + 3ω1)ϕ1 = 0.

4.9. < αP0 + P3, J12 + βD + γZ > (α ≥ 0, β ≥ 0, γ ∈ R) :

u = γ arctan
x2

x1
+ ϕ(ω1, ω2), ω1 =

x2
1 + x2

2

(x0 − αx3)2
,

ω2 = 2β arctan
x2

x1
− ln(x2

1 + x2
2),

4ω1((1− α2)ω1 − 1)ϕ11 − 4(1 + β2)ω−1
1 ϕ22+

8ϕ12 + (6(1− α2)ω1 − 4)ϕ1 − 2ελω1ϕ1×
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4ω1(1 + α2ω1)ϕ2

1 + 4(1 + β2)ω−1
1 ϕ2

2 − 8ϕ1ϕ2 + 4βγω−1
1 ϕ2 + γ2ω−1

1 = 0,

where ε =sign(x0 − αx3).

4.10. < P2, P3, J23 >: u = ϕ(ω1, ω2), ω1 = x0, ω2 = x1,

ϕ11 − ϕ22 + λϕ1|ϕ2| = 0.

4.11. < αP0 + P3, J12 + P0 + βZ > (α ≥ 0, β ∈ R) :

u = βx0 − αβx3 + ϕ(ω1, ω2), ω1 = x0 − αx3 + arctan
x1

x2
, ω2 = x2

1 + x2
2,

(1− α2 − ω−1
2 )ϕ11 − 4ω2ϕ22 − 4ϕ2+

λ
√

(α2 + ω−1
2 )ϕ2

1 + 4ω2ϕ2
2 + 2α2βϕ1 + α2β2(β + ϕ1) = 0.

4.12. < P0, J12 + P3 + αZ > (α ≥ 0) :

u = αx3 + ϕ(ω1, ω2), ω1 = x2
1 + x2

2, ω2 = arctan
x1

x2
+ x3,

4ω1ϕ11 + (1 + ω−1
1 )ϕ22 + 4ϕ1 = 0.

4.13. < J12, J13, J23 >: u = ϕ(ω1, ω2), ω1 = x0, ω2 = x2
1 + x2

2 + x2
3,

ϕ11 − 4ω2ϕ22 − 6ϕ2 + 2λ
√
ω2ϕ1|ϕ2| = 0.

4.14. < P0 + αZ, J12 + βP0 + γP3 > (α = ±1, β ≥ 0, γ ∈ R) :

u = αx0 + αβ arctan
x1

x2
+ ϕ(ω1, ω2),

ω1 = x2
1 + x2

2, ω2 = x3 + γ arctan
x1

x2
,

4ω1ϕ11 + (1 + γ2ω−1
1 )ϕ22 + 4ϕ1−

αλ
√

4ω1ϕ2
1 + (1 + γ2ω−1

1 )ϕ2
2 + 2αβγω−1

1 ϕ2 + α2β2ω−1
1 = 0.

4.15. < αP0 + P3 + Z, J12 + βP0 + γP3 >, where α, β, γ ∈ R and β ≥ 0 :

u = x3 + γ arctan
x1

x2
+ ϕ(ω1, ω2),

ω1 = x2
1 + x2

2, ω2 = x0 − αx3 + (β − αγ) arctan
x1

x2
,

4ω1ϕ11 + (α2 − 1 + (β − αγ)2ω−1
1 )ϕ22 + 4ϕ1−

λϕ2

√
4ω1ϕ2

1 + (α2 + (β − αγ)2ω−1
1 )ϕ2

2 + 2(−α+ (β − αγ)γω−1
1 )ϕ2 + 1 + γ2ω−1

1 = 0.
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4.16. < J12 + αZ,D + βJ12 > (α ≥ 0, β ∈ R) :

u = α arctan
x2

x1
− αβ lnx0 + ϕ(ω1, ω2),

ω1 =
x2

1 + x2
2

x2
0

, ω2 =
x3

x0
,

4ω1(ω1 − 1)ϕ11 + (ω2
2 − 1)ϕ22 + 4ω1ω2ϕ12 + (6ω1 − 4)ϕ1 + 2ω2ϕ2 + αβ−

λ
√

4ω1ϕ2
1 + ϕ2

2 + α2ω−1
1 (2ω1ϕ1 + ω2ϕ2 + αβ) = 0.

4.17. < J12, D + αZ > (α 6= 0) : u = α lnx3 + ϕ(ω1, ω2),

ω1 =
x2

1 + x2
2

x2
0

, ω2 =
x3

x0
,

4ω1(ω1 − 1)ϕ11 + (ω2
2 − 1)ϕ22 + 4ω1ω2ϕ12 + (6ω1 − 4)ϕ1 + 2ω2ϕ2 + αω−2

2 −

λε
√

4ω1ϕ2
1 + ϕ2

2 + 2αω−1
2 ϕ2 + α2ω−2

2 (2ω1ϕ1 + ω2ϕ2) = 0,

where ε =sign x0.

5 Reduction of (1) to differential equations having
three independent variables

5.1. < P0 >: u = ϕ(ω1, ω2, ω3), ω1 = x1, ω2 = x2, ω3 = x3,

ϕ11 + ϕ22 + ϕ33 = 0.

5.2. < αP0 + P1 > (α ≥ 0) :

u = ϕ(ω1, ω2, ω3), ω1 = x0 − αx1, ω2 = x2, ω3 = x3,

(1− α2)ϕ11 − ϕ22 − ϕ33 + λϕ1

√
α2ϕ2

1 + ϕ2
2 + ϕ2

3 = 0.

5.3. < D + αZ > (α ∈ R) : u = α lnx0 + ϕ(ω1, ω2, ω3),

ω1 =
x1

x0
, ω2 =

x2

x0
, ω3 =

x3

x0
,

(ω2
1 − 1)ϕ11 + (ω2

2 − 1)ϕ22 + (ω2
3 − 1)ϕ33 + 2ω1ϕ1 + 2ω2ϕ2 + 2ω3ϕ3 − α−

λ
√
ϕ2

1 + ϕ2
2 + ϕ2

3(ω1ϕ1 + ω2ϕ2 + ω3ϕ3 − α) = 0.

5.4. < Z + αP0 > (α = ±1) : u = α lnx0 + ϕ(ω1, ω2, ω3),

ω1 = x1, ω2 = x2, ω3 = x3,
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ϕ11 + ϕ22 + ϕ33 − αλ
√
ϕ2

1 + ϕ2
2 + ϕ2

3 = 0.

5.5. < Z + αP0 + P1 > (α ∈ R) : u = x1 + ϕ(ω1, ω2, ω3),

ω1 = x0 − αx1, ω2 = x2, ω3 = x3,

(1− α2)ϕ11 − ϕ22 − ϕ33 + λϕ1

√
α2ϕ2

1 + ϕ2
2 + ϕ2

3 − 2αϕ1 + 1 = 0.

5.6. < J12 + αD + βZ >, where α > 0, β ∈ R or α = 0, β ≥ 0 :

u = β arctan
x2

x1
+ ϕ(ω1, ω2, ω3),

ω1 =
x2

1 + x2
2

x2
0

, ω2 =
x3

x0
, ω3 = 2α arctan

x2

x1
− ln(x2

1 + x2
2),

4ω1(ω1 − 1)ϕ11 + (ω2
2 − 1)ϕ22 − 4(1 + α2)ω−1

1 ϕ33+

4ω1ω2ϕ12 + 8ϕ13 + (6ω1 − 4)ϕ1 + 2ω2ϕ2 − λε×√
4ω1ϕ2

2 + ϕ2
2 + 4(1 + α2)ω−1

1 ϕ2
3 − 8ϕ1ϕ3 + 4αβω−1

1 ϕ3 + β2ω−1
1 ×

(2ω1ϕ1 + ω2ϕ2) = 0,

where ε =sign x0.

5.7. < J12 + P0 + αZ > (α ∈ R) : u = αx0 + ϕ(ω1, ω2, ω3),

ω1 = x0 + arctan
x1

x)2
, ω2 = x2

1 + x2
2, ω3 = x3,

(1− ω−1
2 )ϕ11 − 4ω2ϕ22 − ϕ33 − 4ϕ2 + λ

√
ω−1

2 ϕ2
1 + 4ω2ϕ2

2 + ϕ2
3(α+ ϕ1) = 0.

5.8. < J12 + αP0 + P3 + βZ >, where α > 0, β ∈ R or α = 0, β ≥ 0 :

u = βx3 + ϕ(ω1, ω2, ω3), ω1 = x0 − αx3,

ω2 = x2
1 + x2

2, ω3 = arctan
x1

x2
+ x3,

(1− α2)ϕ11 − 4ω2ϕ22 − (1 + ω−1
2 )ϕ33 − 4ϕ2 + 2αϕ13+

λϕ1

√
α2ϕ2

1 + 4ω2ϕ2
2 + (1 + ω−1

2 )ϕ2
3 − 2αϕ1ϕ3 + β2 − 2αβϕ1 + β2 + 2βϕ3 = 0.
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6 Multiplying the solutions

Let (cij) be an orthogonal matrix of order three and d0, dj(j = 1, 2, 3) be arbitrary real
numbers. If u = f(x0, x1, x2, x3) is a solution of (1) then the function

u = εf(Ay0, Ay1, Ay2, Ay3) +B, (7)

(here ε = ±1, y0 = x0+d0, yi =
∑
cijxj +di;A,B are arbitrary real numbers and moreover

A > 0, (i, j = 1, 2, 3) is also the solution of this equation. All solutions of (1), obtained
from the solution u = f(x0, x1, x2, x3), as a result of application of transformations from
the symmetry group (with the Lie algebra F ) of this equation, are exhausted by functions
of the form (6.1). Because the formula (6) is not concerned with the structure of the
solution, it is impossible to state that all solutions of (1) obtained by means of (6) are
different. For example, homogeneous transformations corresponding to matrix cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 1


do not change the solution u = ln{x2

1 + x2
2}. According to what has been said, it is also

necessary to utilize formulae obtained for some sets of solutions in addition to (6).
If u = f(x0, x

2
1 + x2

2 + x2
3), then as a result of multiplying it, it is possible to receive

only solutions of the following form:

u = εf(Ay0, A
2(y2

1 + y2
2 + y2

3)) +B,

where yi = xi + di, (i = 0, 1, 2, 3). All the solutions obtained by multiplying solution
u = f(x0, x

2
1 + x2

2, x3) could be represented in the form

u = εf(Ay0, A
2(y2

1 + y2
2), Ay3)) +B,

where ε = ±1, A,B are arbitrary real numbers, and A > 0, y0 = x0 + d0,

y2
1 + y2

2 = [x1 cosϕ− x2 sinϕ+ d1]2 + [(x1 sinϕ+ x2 cosϕ) cosψ −−x3 sinψ + d2]2,

y3 = x1 sinϕ sinψ + x2 sinψ cosϕ+ x3 cosψ + d3.

Here d0, d1, d2, d3 are arbitrary real numbers, and the parameters ϕ,ψ accept arbitrary
values in the interval [0, 2π).
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