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Abstract

It is shown that the group of geometrical symmetries of the Universal equation of
D-dimensional space coincides with SL(D + 1, R).

1 Introduction

The Universal equation was first introduced in a series of papers by D.B.Fairlie and col-
laborators [1] with the goal of constructing the example of an integrable system in the
space of arbitrary dimensions. In the simplest case (D = 2) this equation is exactly the
Batemann equation [2], which in its turn is closely connected with the equation of Monge
[2]. Later it was understood that this equation may be related to the problem of construc-
tion of local solutions of the bi-harmonical equation. In particular, for the case D = 3
it is connected with the bi-harmonical equation in usual four-dimensional space [3]. This
problem, in turn, is in closed connection with the problem of constructing the instanton
solution in four-dimensional Yang-Mills theory [4].

In this note we want to show that the Universal equation is invariant with respect to
fractional-linear transformations in D 4 1 dimensions, and consequently that the group of
geometrical symmetries of this equation coincides with SL(D + 1, R).

2 General properties of the Universal equation

The original form of the Universal equation in the space of D dimensions is the following

Detp (;jj fﬂ) =0 (D>i,j>1), (2.1)
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where ¢; = g—xi, Gij = ('995(9;;1:]-’ ¢ is an unknown function, and x;-the coordinates of the
space.

This equation possesses remarkable properties. There is an infinite number of Lagrange
functions from which (2.1) arises by the known rules. There is an infinite number of
conservations laws for this equation. It is possible to find the general solution of (2.1)
with the help of the Legendre transformation [1].

We shall call all transformations of coordinates x; = f;(x1, z2,...xp), with respect to
which the equation (2.1) conserves its form, geometrical transformations.

3 The condition of invariance

Let us suppose that 2, are new coordinates. The derivatives with respect to old coordinates
which are interesting for us are connected with the new ones by the usual formulae

o, , Jz!, Oz}, 0%l
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The condition of invariance of (2.1) is equivalent to a system

02!, oz, o’

=B,—+ B;,— 3.2
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where B; are some functions which must be defined from the solution of (3.2) together
with .
In the case i = j it follows immediately from (3.2)

10 oz,
- 5 8LUZ ln( 8%1 )

B;

for all s, or taking the first integral we obtain
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= 105, (33

where the symbol f( means that the function f is independent of an argument z;. Inte-
grating (3.3) once more we obtain as a result

o) = flal + FU s=2 . D. (3.4)

Substituting B; into (3.2) we obtain

oz’ dz', 9%, :<8xg)282mé (890'5)252”3'8 (3.5)

dx; Oz Ox;0x; 0x; 830? oxj/) 0OzF’

So we see that 2/, is the solution of the corresponding Batemann equation with respect to
each pair of arguments 4, j.
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4 The simplest case D = 2

In this case we have only one pair of variables x; 2, and equations (3.4) take the form
7 = ¢(2)25 + ©(2), 1= f(L)ay + F(1),
where ¢(2) = ¢(x2) and so on. Or

®(2) _ FQ)
o= 2@ FD) o, @) T (4.1)
¢(2) — f(1)’ @~ T

Each of the functions z, x4 must satisfy the Batemann equation. Let us write this equation
at first for function x4. Technically it is more convenient to introduce the function 6 =

/
gi??g; in terms of which the Batemann equation may be rewritten in the form
2
Olnf 0 Olno
o1 92
In our case
g S [2-F-Fo-)
¢2 [ D= F —0y(0 - f)
where f1 = f D P2 = ¢ and functions F, ® are considered as the functions of arguments

f, 0, respectlvely The Batemanns equation takes the form

Ju 4 J1Fyy (P —-Fp)A
S @—F-Fi(6—f) ©—F—®y(¢—f)
(4.2)
N | Q-F-Fo—f)|| ¢22 n (®g — Fy)o P2
5 |8 F 0,6 || 0 B F-F(6- ) & F- (6 ])
From (4.2) it follows immediately that F, ® are linear functions of their arguments
F=Af+B, ®=a¢p+p (4.3)
and . 1
fll(aJ;+ ) — ¢22(a<2+ ) =Da=const, a=a—-—A, b=p-B.
fi ¢y
First integrals of the last equations have the form
fl - l(CLf + b)D7 ¢2 = m(a¢ + b)D7 (44)

where [, m — are the constants of integration. So (4.3) and (4.4) have solved the problem
of finding 24 from (4.1).

The function 2} must also be the solution of the Batemann equation. Repeating step
by step the above calculations we come to the following equation

(Pula+bf) _ (g)22(a+bo™")
(P ()3
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Keeping in mind the relations (4.4) we conclude that D = 2. We obtain finally

=kx1 +1 1 =mxy+n
af+b 'V ap+b 2T

where k, [, m,n are the constants of integration. After substitution of all these results into
(4.1) we obtain

; akry — Amao + al — nA , Bkx1 — Bmxzo+1— Bn+ Gl
.CC2:_ 5 .Tl:— .
kri —mzo+1—n

4.
kri—mxzo+1—n (4.5)

5 The general case

All computations of the previous section are correct with respect to each pair of variables
(xi,x;), and so the general solution of the system (3.5) is the fractional-linear transforma-
tion with respect to all the variables of the problem. So we obtain

,_ (Az); + B;
wA pr—
! Z lsxs + ZD+1

(Ay);
(Ay) D41 51)

where A — is an arbitrary DD matrix, B; are the components of a D-dimensional column,
l;, — the components of D + 1 dimensional row, A is the (D + 1)(D + 1) matrix, and ys
are the components of a D + 1 dimensional column (y1,y2, ..., yp, 1).

Formula (5.1) may be considered as a realization of transformations of the SL(D+ 1, R)
group (in the case of real coordinates) from one hand, and as a projective transformation
of the D-dimensional plane from the other.

It is not difficult to check, by direct calculations, that the Universal equation is in-
variant with respect to transformations (5.1) but in the order to prove that (5.1) is the
maximal geometrical symmetry of this equation, the considerations and calculations of
the previous sections should be taken into account.

6 Concluding remarks

The main result of this paper consists in the proof of the fact that the maximal group
of geometrical symmetry of the Universal equation in D-dimensional space coincides with
SL(D + 1, R) — the group of projective transformations of D-dimensional space. The
hidden symmetries of dynamical systems have as their corollary the additional number of
conservation laws which in its turn allow to construct a more wide class of exact solutions
for the systems of such a type. As it was understood recently [3], the solution of the
Universal equation has a direct relation to the definite class of solutions of harmonical and
bi-harmonical equations in four dimensions. The discovered maximal group of geometrical
symmetry of the Universal equation may be used for these purposes.

The authors thank D.B. Fairlie for the discussion of the results of this paper.
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