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Abstract

We present a detailed account of symmetry properties of SU(2) Yang-Mills equations.
Using a subgroup structure of the Poincaré group P (1, 3) we have constructed all
P (1, 3)-inequivalent ansatzes for the Yang-Mills field which are invariant under the
three-dimensional subgroups of the Poincaré group. With the aid of these ansatzes re-
duction of Yang-Mills equations to systems of ordinary differential equations is carried
out and wide families of their exact solutions are constructed.

1 Introduction

Since Newton’s and Euler’s works, exact solutions of differential equations describing phys-
ical processes were highly estimated. Green, Lame, Liouville, Cayley, Donkin, Stokes,
Kirchhoff, Poincaré, Stieltjes, Forsyth, Volterra, Appel, Macdonald, Weber, Bateman,
Whittaker, Sommerfeld and many other famous researchers constructed different classes
of exact solutions of linear Laplace, d’Alembert, heat, and Maxwell equations.

Nowadays, this constructive branch of mathematical physics is not so popular as earlier.
But if one wants to have some nontrivial information on solutions of basic motion equations
in quantum mechanics, field theory, gravitation theory, acoustics, and hydrodynamics,
then the more intensive research work should be carried out in order to develop analytical
methods of solution of partial differential equations (PDE). And what is more, unlike
the mathematical physics of the 19th century, modern mathematical physics is essentially
nonlinear. It means that all principal equations of modern physics, biology and chemistry
are nonlinear. This fact complicates very much the problem of constructing their exact
solutions (see, e.g. [1] and references therein).

Up to now, we have comparatively few papers devoted to construction of exact solutions
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of nonlinear multi-dimensional d’Alembert, Maxwell, Schrödinger, Dirac, Maxwell-Dirac,
Yang-Mills equations. Whereas, a huge amount of papers and monographs are devoted to
construction of exact solutions of equations for gravitational field. It is difficult even to
estimate the number of papers and monographs, where the soliton solutions of the one-
dimensional nonlinear KdV, Schrödinger and Sine-Gordon equations are studied. We are
sure that the above mentioned equations should deserve much more attention of researchers
in mathematical physics.

With the present paper we start a series of papers devoted to construction of new
classes of exact solutions of the classical Yang-Mills equations (YME) with the use of
their Lie and non-Lie symmetry. Here we study in detail symmetry reduction of YME
by Poincaré-invariant ansatzes and obtain wide families of its exact Poincaré-invariant
solutions.

By the classical YME, we mean the following nonlinear system of twelve second-order
PDE:

∂ν∂
ν ~Aµ − ∂µ∂ν

~Aν + e[(∂ν
~Aν)× ~Aµ − 2(∂ν

~Aµ)× ~Aν + (∂µ ~Aν)× ~Aν ] +

e2 ~Aν × ( ~Aν × ~Aµ) = ~0. (1.1)

Here ∂ν = ∂
∂xν

, µ, ν = 0, 3, e = const, ~Aµ = ~Aµ(x0, x1, x2, x3) is the three-com-
ponent vector-potential of the Yang-Mills field (called, for bravity, the Yang-Mills field).
Hereafter, the summation over the repeated indices µ, ν from 0 to 3 is understood. Raising
and lowering the vector indices is performed with the aid of the metric tensor

gµν =



1, µ = ν = 0,

−1, µ = ν = 1, 2, 3,

0, µ 6= ν

(i.e. ∂µ = gµν∂ν).
It should be said that there were several reviews devoted to classical solutions of YME

(see [2] and the literature cited there). But, in fact, symmetry properties of YME were
not used. The solutions were obtained with the help of ad hoc substitutions suggested
by Wu and Yang, Rosen,’t Hooft, Corrigan and Fairlie, Wilczek, Witten (for more detail,
see [2]).

The structure of our paper is as follows. In the second Section we give all necessary
information about symmetry properties of YME and about a solution generation proce-
dure by virtue of the finite transformations of the symmetry group admitted by YME.
In Section 3 we construct P (1, 3)-inequivalent ansatzes for the Yang-Mills field invariant
under the three-parameter subgroups of the Poincaré group. Section 4 is devoted to re-
duction of YME to systems of ordinary differential equations (ODE). Integrating these in
Section 5 we construct multi-parameter families of exact solutions of YME. In Section 6
we consider some generalizations of the solutions obtained and, in particular, construct
the generalization of Coleman’s solution.
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2 Symmetry and Solution Generation for the Yang-Mills
Equations

It was known long ago that YME are invariant with respect to the group C(1, 3)
⊗

SU(2),
where C(1, 3) is the 15-parameter conformal group having the following generators:

Pµ = ∂µ,

Jαβ = xα∂β − xβ∂α + Aaα∂Aa
β
−Aaβ∂Aa

α
,

D = xµ∂µ −Aa
µ∂Aa

µ
, (2.1)

Kµ = 2xµD − (xνx
ν)∂µ + 2Aaµxν∂Aa

ν
− 2Aa

νx
ν∂Aa

µ
,

and SU(2) is the infinite-parameter special unitary group with the following basis gene-
rator:

Q = (εabcA
b
µwc(x) + e−1∂µwa(x))∂Aa

µ
. (2.2)

In (2.1), (2.2) ∂Aa
µ

= ∂
∂Aa

µ
, wc(x) are arbitrary smooth functions, εabc is

the third-order anti-symmetrical tensor with ε123 = 1. Hereafter, summation over the
repeated indices a, b, c from 1 to 3 is understood.

But the fact that the group with generators (2.1), (2.2) is a maximal (in Lie’s sense)
invariance group admitted by YME was established only recently [3] with the use of a sym-
bolic computation technique. The only explanation for this situation is a very cumbersome
structure of the system of PDE (1.1). As a consequence, realization of the Lie algorithm
of finding the maximal invariance group admitted by YME demands a huge amount of
computations. This difficulty had been overcome with the aid of computer facilities.

One of the remarkable possibilities provided by the fact that the considered equation
admits a nontrivial symmetry group gives the possibility of getting new solutions from
the known ones by the solution generation technique [1, 4]. This technique is based on the
following assertion.

Lemma Let

x′µ = fµ(x, u, τ), µ = 0, n− 1,

u′a = ga(x, u, τ), a = 1, N

where τ = (τ1, τ2, . . . , τr) be the r-parameter invariance group of some system of PDE
and Ua(x), a = 1, N be its particular solution. Then the N -component function ua(x)
determined by implicit formulae

Ua(f(x, u, τ)) = ga(x, u, τ), a = 1, N (2.3)

is also a solution of the same system of PDE.
To make use of the above assertion we need formulae for finite transformations gener-

ated by infinitesimal operators (2.1), (2.2). We adduce these formulae following [1, 2].

1. The group of translations (generator X = τµPµ)

x′µ = xµ + τµ, Ad
µ
′ = Ad

µ.
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2. The Lorentz group O(1, 3)

a) the group of rotations (generator X = τJab)

x′0 = 0, x′c = xc, c 6= a, c 6= b,

x′a = xa cos τ + xb sin τ,

x′b = xb cos τ − xa sin τ,

Ad
0
′ = Ad

0, A
d
c
′ = Ad

c , c 6= a, c 6= b,

Ad
a
′ = Ad

a cos τ + Ad
b sin τ,

Ad
b
′ = Ad

b cos τ −Ad
a sin τ ;

b) the group of Lorentz transformations (generator X = τJ0a)

x′0 = x0 cosh τ + xa sinh τ,

x′a = xa cosh τ + x0 sinh τ, x′b = xb, b 6= a,

Ad
0
′ = Ad

0 cosh τ + Ad
a sinh τ,

Ad
a
′ = Ad

a cosh τ + Ad
0 sinh τ, Ad

b
′ = Ad

b , b 6= a.

3. The group of scale transformations (generator X = τD)

x′µ = xµeτ , Ad
µ
′ = Ad

µe−τ .

4. The group of conformal transformations (generator X = τµKµ)

x′µ = (xµ − τµxνx
ν)σ−1(x),

Ad
µ
′ = [gµνσ(x) + 2(xµτν − xντµ +

2ταxατµxν − xαxατµτν − ταταxµxν ]Adν .

5. The group of gauge transformations (generator X = Q)

x′µ = xµ,

Ad
µ
′ = Ad

µ cos w + εdbcA
b
µnc sinw + 2ndnbAb

µ sin2(
w

2
+

e−1[(
1
2
nd∂µw +

1
2
(∂µnd) sinw + εdbc(∂µnb)nc].

In the above formulae σ(x) = 1 − ταxα + (τατα)(xβxβ), na = na(x) is a unit vector
determined by the equality wa(x) = w(x)na(x), a = 1, 3.

Using the Lemma it is not difficult to obtain formulae for generating solutions of YME
by the above transformation groups. We adduce them omitting derivation (see also [3]).

1. The group of translations

Aa
µ(x) = ua

µ(x + τ).

2. The Lorentz group

Ad
µ(x) = aµud

0(ax, bx, cx, dx) + bµud
1(ax, bx, cx, dx) +

cµud
2(ax, bx, cx, dx) + dµud

3(ax, bx, cx, dx).
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3. The group of scale transformations

Ad
µ(x) = eτud

µ(xeτ ).

4. The group of conformal transformations

Ad
µ(x) = [gµνσ

−1(x) + 2σ−2(x)(xµτν − xντµ + 2ταxατµxν −
xαxατµτν − ταταxµxν)]udν((x− τ(xαxα))σ−1(x)).

5. The group of gauge transformations

Ad
µ(x) = ud

µ cos w + εdbcu
b
µnc sinw + 2ndnbub

µ sin2 w

2
+

e−1[
1
2
nd∂µw +

1
2
(∂µnd) sinw + εdbc(∂µnb)nc].

Here ud
µ(x) is an arbitrary given solution of YME; Ad

µ(x) is a new solution of YME;
τ, τµ are arbitrary parameters; aµ, bµ, cµ, dµ are arbitrary parameters satisfying the equa-
lities

aµaµ = −bµbµ = −cµcµ = −dµdµ = 1,

aµbµ = aµcµ = aµdµ = bµcµ = bµdµ = cµdµ = 0.

Besides that, we use the following designations: x+τ = {xµ +τµ, µ = 0, 3}, ax = aµxµ.

Thus, each particular solution of YME gives rise to a multi-parameter family of exact
solutions by virtue of the above solution generation formulae.

3 Ansatzes for the Yang-Mills Field

A key idea of the symmetry approach to the problem of reduction of PDE is a special
choice of the form of a solution. This choice is dictated by a structure of the symmetry
group admitted by the equation under study.

In the case involved, to reduce YME by N variables one has to construct ansatzes for
the Yang-Mills field Aa

µ(x) invariant under N -dimensional subalgebras of the algebra with
the basis elements (2.1), (2.2) [1,5]. Since we are looking for Poincaré-invariant ansatzes
reducing YME to systems of ODE, N is equal to 3. Due to invariance of YME under
the Poincaré group P (1, 3), it is enough to consider only subalgebras which can not be
transformed one into another by group transformation, i.e. P (1, 3)-inequivalent subalge-
bras. Complete description of P (1, 3)-inequivalent subalgebras of the Poincaré algebra was
obtained in [6] (see also [7]).

According to the classical symmetry approach, to construct the ansatz invariant under
the invariance algebra having the basis elements

Xa = ξaµ(x,A)∂µ + ηb
aµ(x,A)∂Ab

µ
, a = 1, 3, (3.1)

where A = {Aa
µ, a = 1, 3, µ = 0, 3}, one has
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1) to construct a complete system of functionally-independent invariants of the oper-
ators (3.1) Ω = {wi(x,A), i = 1, 13};

2) to resolve relations

Fj(w1(x,A), . . . , w13(x,A)) = 0, j = 1, 13 (3.2)

with respect to the function Aa
µ.

As a result, one gets the ansatz for the field Aa
µ(x) which reduces YME to the system

of twelve nonlinear ODE.

Note. Equalities (3.2) can be resolved with respect to Aa
µ, a = 1, 3, µ = 0, 3 if the

condition
rank ‖ξaµ(x,A)‖3 3

a=1 µ=0 = 3 (3.3)

holds. If (3.3) does not hold, the above procedure leads to partially-invariant solutions [5],
which are not considered in the present paper.

In [1, 4] we established that the procedure of construction of invariant ansatzes
could be essentially simplified if coefficients of operators Xa have the following structure:

ξaµ = ξaµ(x), ηb
aµ = ρbc

aµν(x)Ac
ν (3.4)

(i.e. basis elements of the invariance algebra realize the linear representation). In this case,
the invariant ansatz for the field Aa

µ(x) is searched for in the form

Aa
µ(x) = Qab

µν(x)Bb
ν(w(x)). (3.5)

Here Bb
ν(w) are arbitrary smooth functions and w(x), Qab

µν(x) are particular solutions
of the system of PDE

ξaµwxµ = 0, a = 1, 3,

(ξaν∂ν − ρbc
aµα)Qcd

αβ = 0, µ = 0, 3, a, b, d = 1, 3.
(3.6)

Basis elements of the Poincaré algebra Pµ, Jαβ from (2.1) evidently satisfy the condi-
tions (3.4) and besides the equalities

ηb
aµ = ρaµν(x)Ab

ν , a, b = 1, 3, µ = 0, 3 (3.7)

hold.
This fact permits further simplification of formulae (3.5), (3.6). Namely, the ansatz for

the Yang-Mills field invariant under the 3-dimensional subalgebra of the Poincaré algebra
with basis elements of the form (3.1), (3.7) should be looked for in the form

Aa
µ = Qµν(x)Ba

ν (w(x)), (3.8)

where Ba
ν (w) are arbitrary smooth functions and w(x), Qµν(x) are particular solutions of

the following system of PDE:

ξaµwxµ = 0, a = 1, 3, (3.9)

ξaα∂αQµν − ρaµαQαν = 0, a = 1, 3, µ, ν = 0, 3. (3.10)
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Thus, to obtain the complete description of P (1, 3)-inequivalent ansatzes for the field
Aa

µ(x) invariant under 3-dimensional subalgebras of the Poincaré algebra, one has to in-
tegrate the over-determined system of PDE (3.9), (3.10) for each P (1, 3)-inequivalent
subalgebra. Let us note that compatibility of (3.9), (3.10) is guaranteed by the fact that
operators X1, X2, X3 form a Lie algebra.

Consider, as an example, the procedure of constructing ansatz (3.8) invariant under
the subalgebra 〈P1, P2, J03〉. In this case system (3.9) reads

wx1 = 0, wx2 = 0, x0wx3 + x3wx0 = 0,

whence w = x2
0 − x2

3.
Next, we note that coefficients ρ1µν , ρ2µν of the operators P1, P2 are equal to zero,

while coefficients ρ3µν form the following (4× 4) matrix

‖ρ3µν‖ 3
µ,ν=0 =

∥∥∥∥∥∥∥∥
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

∥∥∥∥∥∥∥∥
(we designate this constant matrix by the symbol S).

With account of the above fact, equations (3.10) take the form

Qx1 = 0, Qx2 = 0, x0Qx3 + x3Qx0 − SQ = 0, (3.11)

where Q = ‖Qµν(x)‖3
µ,ν=0 is a (4× 4)-matrix.

From the first two equations of system (3.11) it follows that Q = Q(x0, x3). Since S is
a constant matrix, a solution of the third equation can be looked for in the form (see, for
example, [4])

Q = exp {f(x0, x3)S}.

Substituting this expression into (3.11) we get

(x0fx3 + x3fx0 − 1) exp {fS} = 0

or, equivalently,
x0fx3 + x3fx0 = 1,

whence f = ln(x0 + x3).
Consequently, a particular solution of equations (3.11) reads

Q = exp {ln(x0 + x3)S}.

Using an evident identity S = S3 we get the following equalities:

Q =
∞∑

n=0

(n!)−1(ln(x0 + x3))nSn = I + S[ln(x0 + x3) + (3!)−1(ln(x0 + x3))3 + . . .]+

S2[(2!)−1(ln(x0 + x3))2 + (4!)−1(ln(x0 + x3))4 + . . .] =

I + S sinh(ln(x0 + x3)) + S2(cosh(ln(x0 + x3))− 1),
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where I is a unit (4× 4)-matrix.
Substitution of the obtained expressions for functions w(x), Qµν(x) into (3.8) yields

the ansatz for the Yang-Mills field Aa
µ(x) invariant under the algebra 〈P1, P2, J03〉

Aa
0 = Ba

0 (x2
0 − x2

3) cosh ln(x0 + x3) + Ba
3 (x2

0 − x2
3) sinh ln(x0 + x3),

Aa
1 = Ba

1 (x2
0 − x2

3), Aa
2 = Ba

2 (x2
0 − x2

3),

Aa
3 = Ba

3 (x2
0 − x2

3) cosh ln(x0 + x3) + Ba
0 (x2

0 − x2
3) sinh ln(x0 + x3).

(3.12)

Substituting (3.12) into YME we get a system of ODE for functions Ba
µ. If we will

succeed in constructing its general or particular solutions, then substituting it into formulae
(3.12) we get an exact solution of YME. But such a solution will have an unpleasant
feature: independent variables xµ will be included into it in asymmetrical way. At the
same time, in the initial equation (1.1) all independent variables are on equal rights. To
remove this defect one has to apply solution generation procedure by transformations from
the Lorentz group. As a result, we will obtain an ansatz for the Yang-Mills field in the
manifestly-covariant form with symmetrical dependence on xµ.

In the same way, we construct the rest of ansatzes invariant under three-dimensional
subalgebras of the Poincaré algebra. They are represented in the unified form

Aa
µ(x) = {(aµaν − dµdν) cosh θ0 + (dµaν − dνaµ) sinh θ0+

2(aµ + dµ)[(θ1 cos θ3 + θ2 sin θ3)bν + (θ2 cos θ3 − θ1 sin θ3)cν+

(θ2
1 + θ2

2)e
−θ0(aν + dν)] + (bµcν − bνcµ) sin θ3 − (cµcν + bµbν) cos θ3−

2e−θ0(θ1bµ + θ2cµ)(aν + dν)}Baν(w).
(3.13)

Here θµ, µ = 0, 3, w are some functions whose explicit form is determined by the choice
of a subalgebra of the Poincaré algebra AP (1, 3).

Below, we adduce a complete list of 3-dimensional P (1, 3)-inequivalent subalgebras of
the Poincaré algebra following [7]

L1 = 〈P0, P1, P2〉;
L3 = 〈P0 + P3, P1, P2〉;
L5 = 〈J03, P0 + P3, P1〉;
L7 = 〈J03 + P1, P0 + P3, P2〉;
L9 = 〈J12 + P0, P1, P2〉;
L11 = 〈J12 + P0 − P3, P1, P2〉;
L13 = 〈G1 + P2, P0 + P3, P1〉;
L15 = 〈G1 + P0 − P3, P0 + P3, P1 + αP2〉;
L17 = 〈G1 + P2, G2 − P1 + αP2, P0 + P3〉;
L19 = 〈G1, J03, P0 + P3〉;
L21 = 〈G1, J03 + P1 + αP2, P0 + P3〉;
L23 = 〈G1, P0 + P3, P1〉;
L25 = 〈J03, P0, P3〉;
L27 = 〈J01, J02, J12〉;

L2 = 〈P1, P2, P3〉;
L4 = 〈J03 + αJ12, P1, P2〉;
L6 = 〈J03 + P1, P0, P3〉;
L8 = 〈J12 + αJ03, P0, P3〉;
L10 = 〈J12 + P3, P1, P2〉;
L12 = 〈G1, P0 + P3, P2 + αP1〉;
L14 = 〈G1 + P0 − P3, P0 + P3, P2〉;
L16 = 〈J12, J03, P0 + P3〉;
L18 = 〈J03, G1, P2〉;
L20 = 〈G1, J03 + P2, P0 + P3〉;
L22 = 〈G1, G2, J03 + αJ12〉;
L24 = 〈J12, P1, P2〉;
L26 = 〈J12, J13, J23〉;

(3.14)
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Here Gi = J0i − Ji3 (i = 1, 2), α ∈ R.
Ansatzes for the Yang-Mills field Aa

µ(x) are of the form (3.13), functions θµ(x),
µ = 0, 3, w(x) being determined by one of the following formulae:

L1 : θµ = 0, w = dx; L2 : θµ = 0, w = ax; L3 : θµ = 0, w = kx;

L4 : θ0 = − ln |kx|, θ1 = θ2 = 0, θ3 = α ln |kx|, w = (ax)2 − (dx)2;

L5 : θ0 = − ln |kx|, θ1 = θ2 = θ3 = 0, w = cx;

L6 : θ0 = −bx, θ1 = θ2 = θ3 = 0, w = cx;

L7 : θ0 = −bx, θ1 = θ2 = θ3 = 0, w = bx− ln |kx|;

L8 : θ0 = α arctan(bx(cx)−1), θ1 = θ2 = 0,

θ3 = − arctan(bx(cx)−1), w = (bx)2 + (cx)2;

L9 : θ0 = θ1 = θ2 = 0, θ3 = −ax, w = dx;

L10 : θ0 = θ1 = θ2 = 0, θ3 = dx, w = ax;

L11 : θ0 = θ1 = θ2 = 0, θ3 = −1
2
kx, w = ax− dx;

L12 : θ0 = 0, θ1 =
1
2
(bx− αcx)(kx)−1,

θ2 = θ3 = 0, w = kx;

L13 : θ0 = θ2 = θ3 = 0, θ1 =
1
2
cx, w = kx;

L14 : θ0 = θ2 = θ3 = 0, θ1 = −1
4
kx, w = 4bx + (kx)2; (3.15)

L15 : θ0 = θ2 = θ3 = 0, θ1 = −1
4
kx, w = 4(αbx− cx) + α(kx)2;

L16 : θ0 = − ln |kx|, θ1 = θ2 = 0, θ3 = − arctan(bx(cx)−1), w = (bx)2 + (cx)2;

L17 : θ0 = θ3 = 0, θ1 =
1
2
(cx + (α + kx)bx)(1 + kx(α + kx))−1,

θ2 = −1
2
(bx− cxkx)(1 + kx(α + kx))−1, w = kx;

L18 : θ0 = − ln |kx|, θ1 =
1
2
bx(kx)−1, θ2 = θ3 = 0, w = (ax)2 − (bx)2 − (dx)2;

L19 : θ0 = − ln |kx|, θ1 =
1
2
bx(kx)−1, θ2 = θ3 = 0, w = cx;
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L20 : θ0 = − ln |kx|, θ1 =
1
2
bx(kx)−1, θ2 = θ3 = 0, w = ln |kx| − cx;

L21 : θ0 = − ln |kx|, θ1 =
1
2
(bx− ln |kx|)(kx)−1, θ2 = θ3 = 0,

w = α ln |kx| − cx;

L22 : θ0 = − ln |kx|, θ1 =
1
2
bx(kx)−1, θ2 =

1
2
cx(kx)−1,

θ3 = α ln |kx|, w = (ax)2 − (bx)2 − (cx)2 − (dx)2.

Here ax = aµxµ, bx = bµxµ, cx = cµxµ, dx = dµxµ, µ = 0, 3, kx = ax + dx.

NOTE Basis elements of subalgebras L23, L24, L25, L26, L27 do not satisfy (3.3).
That is why, ansatzes invariant under these subalgebras are partially-invariant solutions
and are not considered here.

4 Reduction of the Yang-Mills Equations

In order to reduce YME to ODE it is necessary to substitute ansatz (3.13) into (1.1)
and convolute the expression obtained with Qµ

α(x). As a result, we get a system of twelve
nonlinear ODE for functions Ba

ν (w) of the form

kµγ
~̈Bγ + lµγ

~̇Bγ + mµγ
~Bγ + egµνγ

~̇Bν × ~Bγ + ehµνγ
~Bν × ~Bγ+

e2 ~Bγ × ( ~Bγ × ~Bµ) = ~0. (4.1)

Coefficients of the reduced ODE are given by the following formulae:

kµγ = gµγF1 −GµGγ , lµγ = gµγF2 + 2Sµγ −GµHγ −GµĠγ ,

mµγ = Rµγ −GµḢγ , (4.2)

gµνγ = gµγGν + gνγGµ − 2gµνGγ , hµνγ = (1/2)(gµγHν − gµνHγ)− Tµνγ ,

where gµν is a metric tensor of the Minkowski space R(1, 3) and F1, F2, Gµ, . . . , Tµνγ are
functions on w determined by the relations

F1 = wxµwxµ , F2 = 2w, Gµ = Qαµwxα , Hµ = Qαµxα ,

Sµν = Qα
µQανxβ

wxβ , Rµν = Qα
µ2Qαν , (4.3)

Tµνγ = Qα
µQανxβ

Qβγ + Qα
ν Qαγxβ

Qβµ + Qα
γ Qαµxβ

Qβν .

Substituting functions Qµν(x) from (3.13), where θµ(x), w(x) are determined by one
of the formulae (3.15) into (4.2),(4.3) we obtain coefficients of the corresponding systems
of ODE (4.1)

L1 : kµγ = −gµγ − dµdγ , lµγ = mµγ = 0,
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gµνγ = gµγdν + gνγdµ − 2gµνdγ , hµνγ = 0;

L2 : kµγ = gµγ − aµaγ , lµγ = mµγ = 0,

gµνγ = gµγaν + gνγaµ − 2gµνaγ , hµνγ = 0;

L3 : kµγ = −kµkγ , lµγ = mµγ = 0, gµνγ = gµγkν + gνγkµ − 2gµνkγ , hµνγ = 0;

L4 : kµγ = 4gµγw − aµaγ(w + 1)2 − dµdγ(w − 1)2 − (aµdγ + aγdµ)(w2 − 1),

lµγ = 4(gµγ + α(bµcγ − cµbγ))− 2kµ(aγ − dγ + kγw), mµγ = 0,

gµνγ = ε(gµγ(aν − dν + kνw) + gνγ(aµ − dµ + kµw)− 2gµν(aγ − dγ + kγw)),

hµνγ =
ε

2
[gµγkν − gµνkγ ] + αε[(bµcν − cµbν)kγ + (bνcγ − cνbγ)kµ+

(bγcµ − cγbµ)kν ];

L5 : kµγ = −gµγ − cµcγ , lµγ = −εcµkγ , mµγ = 0,

gµνγ = gµγcν + gνγcµ − 2gµνcγ , hµνγ =
ε

2
(gµγkν − gµνkγ);

L6 : kµγ = −gµγ − cµcγ , lµγ = 0,

mµγ = −(aµaγ − dµdγ), gµνγ = gµγcν + gνγcµ − 2gµνcγ ,

hµνγ = −[(aµdν − aνdµ)bγ + (aνdγ − aγdν)bµ + (aγdµ − aµdγ)bν ];

L7 : kµγ = −gµγ − (bµ − εkµ)(bγ − εkγ), lµγ = −2(aµdγ − aγdµ),

mµγ = −(aµaγ − dµdγ),

gµνγ = gµγ(bν − εkν) + gνγ(bµ − εkµ)− 2gµν(bγ − εkγ),

hµνγ = −[(aµdν − aνdµ)bγ + (aνdγ − aγdν)bµ + (aγdµ − aµdγ)bν ];

L8 : kµγ = −4w(gµγ + cµcγ), lµγ = −4(gµγ + cµcγ),

mµγ = − 1
w

(α2(aµaγ − dµdγ) + bµbγ), gµνγ = 2
√

w(gµγcν + gνγcµ − 2gµνcγ),

hµνγ =
1

2
√

w
(gµγcν − gµνcγ) +

α√
w

((aµdν − aνdµ)bγ + (aνdγ − dνaγ)bµ+

(aγdµ − aµdγ)bν);

L9 : kµγ = −gµγ − dµdγ , lµγ = 0,

mµγ = bµbγ + cµcγ , gµνγ = gµγdν + gνγdµ − 2gµνdγ ,
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hµνγ = aγ(bµcν − cµbν) + aµ(bνcγ − cνbγ) + aν(bγcµ − cγbµ);

L10 : kµγ = gµγ − aµaγ , lµγ = 0,

mµγ = −(bµbγ + cµcγ), gµνγ = gµγaν + gνγaµ − 2gµνaγ ,

hµνγ = −[dγ(bµcν − cµbν) + dµ(bνcγ − cνbγ) + dν(bγcµ − cγbµ)];

L11 : kµγ = −(aµ − dµ)(aγ − dγ), lµγ = −2(bµcγ − cµbγ), mµγ = 0,

gµνγ = gµγ(aν − dν) + gνγ(aµ − dµ)− 2gµν(aγ − dγ),

hµνγ =
1
2
[kγ(bµcν − cµbν) + kµ(bνcγ − cνbγ) + kν(bγcµ − cγbµ)];

L12 : kµγ = −kµkγ , lµγ = − 1
w

kµkγ , mµγ = −α2

w2
kµkγ ,

gµνγ = gµγkν + gνγkµ − 2gµνkγ , hµνγ =
1

2w
(gµγkν − gµνkγ)+

α

w
((kµbν − kνbµ)cγ + (kνbγ − kγbν)cµ + (kγbµ − kµbγ)cν);

L13 : kµγ = −kµkγ , lµγ = 0, mµγ = −kµkγ , (4.4)

gµνγ = gµγkν + gνγkµ − 2gµνkγ , hµνγ = −((kµbν − kνbµ)cγ+

(kνbγ − kγbν)cµ + (kγbµ − kµbγ)cν);

L14 : kµγ = −16(gµγ + bµbγ), lµγ = mµγ = hµνγ = 0,

gµνγ = 4(gµγbν + gνγbµ − 2gµνbγ);

L15 : kµγ = −16[(1 + α2)gµγ + (cµ − αbµ)(cγ − αbγ)], lµγ = mµγ = hµνγ = 0,

gµνγ = −4[gµγ(cν − αbν) + gνγ(cµ − αbµ)− 2gµν(cγ − αbγ)];

L16 : kµγ = −4w(gµγ + cµcγ), lµγ = −4(gµγ + cµcγ)− 2εkγcµ

√
w,

mµγ = − 1
w

bµbγ , gµνγ = 2
√

w(gµγcν + gνγcµ − 2gµνcγ),

hµνγ =
1
2
[ε(gµγkν − gµνkγ) +

1√
w

(gµγcν − gµνcγ)];

L17 : kµγ = −kµkγ , lµγ = − 2w + α

w(w + α) + 1
kµkγ ,

mµγ = −4kµkγ(1 + w(α + w))−2, gµνγ = gµγkν + gνγkµ − 2gµνkγ ,

hµνγ =
1
2
(α + 2w)(gµγkν − gµνkγ)(1 + w(α + w))−1−
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2(1 + w(w + α))−1((kµbν − kνbµ)cγ + (kνbγ − kγbν)cµ+

(kγbµ − kµbγ)cν);

L18 : kµγ = 4wgµγ − (kµw + aµ − dµ)(kγw + aγ − dγ), lµγ = 6gµγ+

4(aµdγ − aγdµ)− 3kγ(kµw + aµ − dµ), mµγ = −kµkγ ,

gµνγ = ε(gµγ(kνw + aν − dν) + gνγ(kµw + aµ − dµ)−

2gµν(kγw + aγ − dγ)), hµνγ = ε(gµγkν − gµνkγ);

L19 : kµγ = −gµγ − cµcγ , lµγ = 2εkγcµ, mµγ = −kµkγ ,

gµνγ = gµγcν + gνγcµ − 2gµνcγ , hµνγ = ε(gµγkν − gµνkγ);

L20 : kµγ = −gµγ − (cµ − εkµ)(cγ − εkγ), lµγ = 2εkγcµ − 2kµkγ ,

mµγ = −kµkγ , gµνγ = gµγ(εkν − cν) + gνγ(εkµ − cµ)− 2gµν(εkγ − cγ),

hµνγ = ε(gµγkν − gµνkγ);

L21 : kµγ = −gµγ − (cµ − αεkµ)(cγ − αεkγ), lµγ = 2(εkγcµ − αkµkγ),

mµγ = −kµkγ , gµνγ = −gµγ(cν − αεkν)− gνγ(cµ − αεkµ) + 2gµν(cγ − αεkγ),

hµνγ = ε(gµγkν − gµνkγ);

L22 : kµγ = 4wgµγ − (aµ − dµ + kµw)(aγ − dγ + kγw),

lµγ = 4[2gµγ + α(bµcγ − cµbγ)− aµaγ + dµdγ − wkµkγ ], mµγ = −2kµkγ ,

gµνγ = ε(gµγ(aν − dν + kνw) + gνγ(aµ − dµ + kµw)−

2gµν(aγ − dγ + kγw), hµνγ =
3ε

2
(gµγkν − gµνkγ)− εα[kγ(bµcν − cµbν)+

kµ(bνcγ − cνbγ) + kν(bγcµ − cγbµ)];

where kµ = aµ + dµ, ε = 1 for ax + dx > 0 and ε = −1 for ax + dx < 0 .

5 Exact Solutions of the Yang-Mills Equations

When applying the symmetry reduction procedure to the nonlinear Dirac equation, we
succeeded in constructing general solutions of a large part of reduced systems of ODE. In
the case involved we are not so lucky. Nevertheless, we obtain some particular solutions of
equations (4.2), (4.4).

The principal idea of our approach to integration of systems of ODE (4.2),(4.4) is rather
simple and quite natural. It is a reduction of these systems by the number of components
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with the aid of ad hoc substitutions. Using this trick we construct particular solutions of
equations 1, 2, 5, 8, 14, 15, 16, 18, 19, 20, 21, 22 (α = 0). Below we adduce substitutions
for ~Bµ(w) and corresponding equations.

1. ~Bµ = aµ~e1f(w) + bµ~e2g(w) + cµ~e3h(w),

f̈ − e2(g2 + h2)f = 0, g̈ + e2(f2 − h2)g = 0, ḧ + e2(f2 − g2)h = 0.

2. ~Bµ = bµ~e1f(w) + cµ~e2g(w) + dµ~e3h(w),

f̈ + e2(g2 + h2)f = 0, g̈ + e2(f2 + h2)g = 0, ḧ + e2(f2 + g2)h = 0.

5. ~Bµ = kµ~e1f(w) + bµ~e2g(w), f̈ − e2g2f = 0, g̈ = 0.

8.1.(α = 0) ~Bµ = kµ~e1f(w) + bµ~e2g(w),

4wf̈ + 4ḟ − e2g2f = 0, 4wg̈ + 4ġ − w−1g = 0.

8.2. ~Bµ = aµ~e1f(w) + dµ~e2g(w) + bµ~e3h(w),

4wf̈ + 4ḟ − α2

w
f − 2αe√

w
gh + e2(h2 + g2)f = 0,

4wg̈ + 4ġ +
α2

w
g +

2αe√
w

fh + e2(f2 − h2)g = 0,

4wḧ + 4ḣ− w−1h +
2αe√

w
fg + e2(f2 − g2)h = 0.

14.1. ~Bµ = aµ~e1f(w) + dµ~e2g(w) + cµ~e3h(w), (5.1)

16f̈ − e2(h2 + g2)f = 0, 16g̈ + e2(f2 − h2)g = 0, 16ḧ + e2(f2 − g2)h = 0.

14.2. ~Bµ = kµ~e1f(w) + cµ~e2g(w), 16f̈ − e2g2f = 0, g̈ = 0.

15.1. ~Bµ = aµ~e1f(w) + dµ~e2g(w) + (1 + α2)−
1
2 (αcµ + bµ)~e3h(w),

16(1 + α2)f̈ − e2(h2 + g2)f = 0, 16(1 + α2)g̈ + e2(f2 − h2)g = 0,

16(1 + α2)ḧ + e2(f2 − g2)h = 0.

15.2. ~Bµ = kµ~e1f(w) + (1 + α2)−
1
2 (αcµ + bµ)~e2g(w),

16(1 + α2)f̈ − e2fg2 = 0, g̈ = 0.

16. ~Bµ = kµ~e1f(w) + bµ~e2g(w),

4wf̈ + 4ḟ − e2g2f = 0, 4wg̈ + 4ġ − w−1g = 0.

18. ~Bµ = bµ~e1f(w) + cµ~e2g(w),
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4wf̈ + 6ḟ + e2g2f = 0, 4wg̈ + 6ġ + e2f2g = 0.

19. ~Bµ = kµ~e1f(w) + bµ~e2g(w),

f̈ − e2g2f = 0, g̈ = 0.

20. ~Bµ = kµ~e1f(w) + bµ~e2g(w),

f̈ − e2g2f = 0, g̈ = 0.

21. ~Bµ = kµ~e1f(w) + bµ~e2g(w),

f̈ − e2g2f = 0, g̈ = 0.

22(α = 0). ~Bµ = bµ~e1f(w) + cµ~e2g(w),

4wf̈ + 8ḟ + e2g2f = 0, 4wg̈ + 8ġ + e2f2g = 0.

In the above formulae we use designations ~e1 = (1, 0, 0), ~e2 = (0, 1, 0), ~e3 =
(0, 0, 1).

Thus, combining symmetry reduction by the number of independent variables and
reduction by the number of dependent variables we reduce YME to rather simple ODE.
It is worth reminding that effectiveness of the widely used ansatz for the Yang-Mills field
suggested by t’Hooft et al [2] is closely connected with the fact that it reduces the system
of twelve PDE to one nonlinear wave equation.

Next, we will briefly consider a procedure of integration of equations (5.1).
Substitution f = 0, g = h = u(w) reduces the system of ODE 1 from (5.1) to the

equation

ü = e2u3, (5.2)

which is integrated in elliptic functions [8]. Besides that, ODE (5.2) has a solution which
is expressed in terms of elementary functions u =

√
2(ew − C)−1, C ∈ R1.

ODE 2 with f = g = h = u(w) reduces to the form ü + 2e2u3 = 0.
This equation is also integrated in elliptic functions [8].
Integrating the second equation of system of ODE 5 we get g = C1w+C2, Ci ∈ R1.

If C1 6= 0, then the constant C2 can be neglected, and we may put C2 = 0. Provided C1 6= 0,
the first equation from system 5 reads

f̈ − e2C2
1w2f = 0. (5.3)

A general solution of ODE (5.3) is given by formula f = w1/2Z 1
4
( ie

2 C1w
2).

Hereafter, we use the designation Zν(w) = C3Jν(w) + C4Yν(w), where Jν , Yν are
Bessel functions, C3, C4 are arbitrary constants.

In the case C1 = 0, C2 6= 0 a general solution of the first equation from system 5 reads
f = C3 coshC2ew + C4 sinhC2ew, where C3, C4 are arbitrary constants.

At last, provided C1 = C2 = 0, a general solution of the first equation from system 5
has the form f = C3w + C4, C3, C4 ∈ R1.
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A general solution of the second ODE from system 8.1 is of the form g = C1
√

w +
C2(

√
w)−1, where C1, C2 are arbitrary constants.

Substituting the expression obtained into the first equation we get

4w2f̈ + 4wḟ − e2(C1w + C2)2f = 0. (5.4)

Under C1, C2 6= 0 a solution of ODE (5.4) is not known. In the remaining cases its
general solution reads

a) C1 6= 0, C2 = 0

f = Z0[
ie

2
C1w],

b) C1 = 0, C2 6= 0

f = C3w
eC2
2 + C4w

− eC2
2 ,

c) C1 = 0, C2 = 0

f = C3 lnw + C4.

Here C3, C4 are arbitrary constants.
We do not succeed in obtaining particular solutions of system 8.2. Equations 14.1

coincide with equations 1, if one changes e by e
4 . Similarly, equations 14.2 coincide with

equations 5, if one changes e by e
4 . Next, equations 15.1 coincide with equations 1 and

equations 15.2 – with equations 5, if one replaces e by e
4(1 + α2)−

1
2 .

System of ODE 16 coincides with system 8.1 and systems 19,20,21 – with system 5.
We did not succeed in integrating equations 18.

At last, system 22 (α = 0) with the substitution f = g = u(w) reduces to the form

wü + 2u̇ +
e2

4
u3 = 0. (5.5)

ODE (5.5) is Emden-Fowler equation and the function u = e−1w− 1
2 , is its parti-

cular solution.
Substituting the results obtained into corresponding formulae from (5.1) and then into

the ansatz (3.13), we get exact solutions of the nonlinear YME (1.1). Let us note that
solutions of systems of ODE 5, 8.1, 14.2, 15.2, 16, 19, 20, 21 satisfying the condition
g = 0 give rise to Abelian solutions of YME. We do not adduce them and present only
non-Abelian solutions of YME.

1. ~Aµ = (~e2bµ + ~e3cµ)
√

2(edx− λ)−1;

2. ~Aµ = (~e2bµ + ~e3cµ)[λsn(
√

2
2

eλdx)dn(
√

2
2

eλdx)][cn(
√

2
2

eλdx)]−1;

3. ~Aµ = (~e2bµ + ~e3cµ)λ[cn(eλdx)]−1;
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4. ~Aµ = (~e1bµ + ~e2cµ + ~e3dµ)λcn(eλax);

5. ~Aµ = ~e1kµ|kx|−1√cxZ 1
4
[
i

2
eλ(cx)2] + ~e2bµλcx;

6. ~Aµ = ~e1kµ|kx|−1[λ1 cosh(eλcx) + λ2 sinh(eλcx)] + ~e2bµλ;

7. ~Aµ = ~e1kµZ0[
i

2
eλ((bx)2 + (cx)2)] + ~e2(bµcx− cµbx)λ;

8. ~Aµ = ~e1kµ[λ1((bx)2 + (cx)2)
eλ
2 + λ2((bx)2 + (cx)2)−

eλ
2 ]+

~e2(bµcx− cµbx)λ((bx)2 + (cx)2)−1;

9. ~Aµ = [~e2(
1
8
(dµ − kµ(kx)2) +

1
2
bµkx) + ~e3cµ]λsn(

e
√

2
8

λ(4bx + (kx)2))×

dn(
e
√

2
8

λ(4bx + (kx)2))(cn(
e
√

2
8

λ(4bx + (kx)2)))−1;

10. ~Aµ = [~e2(
1
8
(dµ − kµ(kx)2) +

1
2
bµkx) + ~e3cµ]λ[cn(

e
√

2λ

8
(4bx + (kx)2))]−1;

11. ~Aµ = [~e2(
1
8
(dµ − kµ(kx)2) +

1
2
bµkx) + ~e3cµ]4

√
2(e(4bx + (kx)2)− λ)−1;

12. ~Aµ = ~e1kµ

√
4bx + (kx)2Z 1

4
(
ieλ

8
(4bx + (kx)2)2) + ~e2cµλ(4bx + (kx)2); (5.6)

13. ~Aµ = ~e1kµ(λ1 cosh(
eλ

4
(4bx + (kx)2)) + λ2 sinh(

eλ

4
(4bx + (kx)2))) + ~e2cµλ;

14. ~Aµ = {~e2(dµ −
1
8
kµ(kx)2 − 1

2
bµkx) + ~e3(αcµ + bµ +

1
2
kµkx)(1 + α2)−

1
2 }×

λsn[
eλ
√

2
8

(4(αbx− cx) + α(kx)2)(1 + α2)−
1
2 ]×

dn[
eλ
√

2
8

(4(αbx− cx) + α(kx)2)(1 + α2)−
1
2 ]×

{cn[
eλ
√

2
8

(4(αbx− cx) + α(kx)2)(1 + α2)−
1
2 ]}−1;

15. ~Aµ = {~e2(dµ −
1
8
kµ(kx)2 − 1

2
bµkx) + ~e3(αcµ + bµ +

1
2
kµkx)(1 + α2)−

1
2 }×

{cn[
eλ

4
(4(αbx− cx) + α(kx)2)(1 + α2)−

1
2 ]}−1;

16. ~Aµ = {~e2(dµ −
1
8
kµ(kx)2 − 1

2
bµkx) + ~e3(αcµ + bµ +

1
2
kµkx)(1 + α2)−

1
2 }×
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4
√

2(1 + α2)
1
2 [e(4(αbx− cx) + α(kx)2)]−1;

17. ~Aµ = ~e1kµ{
√

4(αbx− cx) + α(kx)2Z 1
4
(
ieλ

8
(4(αbx− cx) + α(kx)2)2(1 + α2)−

1
2 }+

~e2(αcµ + bµ +
1
2
kµkx)λ(4(αbx− cx) + α(kx)2)(1 + α2)−

1
2 ;

18. ~Aµ = ~e1kµ{λ1ch[
eλ

4
(1 + α2)−

1
2 (4(αbx− cx) + α(kx)2)]+

λ2 sinh[
eλ

4
(1 + α2)−

1
2 (4(αbx− cx) + α(kx)2]}+

~e2(αcµ + bµ +
1
2
kµkx)λ(1 + α2)−

1
2 ;

19. ~Aµ = ~e1kµ|kx|−1Z0[
ieλ

2
((bc)2 + (cx)2)] + ~e2(bµcx− cµbx)λ;

20. ~Aµ = ~e1kµ|kx|−1[λ1((bx)2 + (cx)2)
eλ
2 + λ2((bx)2 + (cx)2)−

eλ
2 ]+

~e2(bµcx− cµbx)λ((bx)2 + (cx)2)−1;

21. ~Aµ = ~e1kµ|kx|−1√cxZ 1
4
(
ieλ

2
(cx)2) + ~e2(bµ − kµbx(kx)−1)λcx;

22. ~Aµ = ~e1kµ|kx|−1[λ1 cosh(λecx) + λ2 sinh(λecx)] + ~e2(bµ − kµbx(kx)−1)λ;

23. ~Aµ = ~e1kµ|kx|−1
√

ln |kx| − cxZ 1
4
(
ieλ

2
(ln |kx| − cx)2)+

~e2(bµ − kµbx(kx)−1)λ(ln |kx| − cx);

24. ~Aµ = ~e1kµ|kx|−1[λ1 cosh(λe(ln |kx| − cx)) + λ2 sinh(λe(ln |kx| − cx))]+

~e2(bµ − kµbx(kx)−1)λ;

25. ~Aµ = ~e1kµ|kx|−1
√

α ln |kx| − cxZ 1
4
(
ieλ

2
(α ln |kx| − cx)2)+

~e2(bµ − kµ(bx− ln |kx|)(kx)−1)λ(α ln |kx| − cx);

26. ~Aµ = ~e1kµ|kx|−1[λ1 cosh(λe(α ln |kx| − cx)) + λ2 sinh(λe(α ln |kx| − cx))]+

~e2(bµ − kµ(bx− ln |kx|)(kx)−1)λ;

27. ~Aµ = {~e1(bµ − kµbx(kx)−1) + ~e2(cµ − kµcx(kx)−1)}e−1(xµxµ)−
1
2 ;

28. ~Aµ = {~e1(bµ − kµbx(kx)−1) + ~e2(cµ − kµcx(kx)−1)}f(xµxµ),

wf̈ + 2ḟ + (e2f3/4) = 0, w = xµxµ = (ax)2 − (bx)2 − (cx)2 − (dx)2.
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In the above formulae Zα(w) is the Bessel function; sn, dn, cn, are Jacobi elliptic func-
tions having the modulus

√
2

2 ; λ, λ1, λ2 = const.
In the present paper we do not analyze in detail the obtained solution. We only note

that the solutions numbered by 27 is nothing more but the meron solution of YME [2]. In
the Euclidean space meron and instanton solutions were obtained by Alfaro, Fubini, Furlan
[9] and Belavin, Polyakov, Schwartz, Tyupkin [10] with the use of the ansatz suggested by
’t Hooft [11], Corrigan and Fairlie [12] and Wilczek [13].

Another important point is that we can obtain new exact solutions of YME by applying
to solutions (5.6) the solution generation technique. We do not adduce corresponding
formulae because of their cumbersomity.

6 Some Generalizations

It was noticed in [14] that group-invariant solutions of nonlinear PDE could provide us
with rather general information about the structure of solutions of the equation under
study. Using this fact, we constructed in [4, 14] a number of new exact solutions of the
nonlinear Dirac equation which could not be obtained by symmetry reduction procedure.
We will demonstrate that the same idea will be effective for constructing new solutions of
YME.

Solutions of YME numbered by 7, 8, 19, 20 can be presented in the following unified
form:

~Aµ = kµ
~B(kx, cx) + bµ

~C(kx, cx), (6.1)

where kx = kµxµ, cx = cµxµ, kµ = aµ + dµ.
Substituting the ansatz (6.1) into YME and splitting the equality obtained with respect

to linearly-independent four-vectors with components kµ, bµ, cµ, we get

1. ~Cw1w1 = ~0,

2. ~C × ~Cw1 = ~0, (6.2)

3. ~Bw1w1 + e ~Cw0 × ~C + e2 ~C × (~C × ~B) = ~0.

Here we use designations w0 = kx,w1 = cx.
A general solution of the first two equations from (6.2) is given by one of the formulae

I. ~C = ~f(w0),

II. ~C = (w1 + v0(w0))~f(w0),

where v0, ~f are arbitrary smooth functions.
Consider the case ~C = ~f(w0). Substituting this expression into the third equation

from (6.2) we have

~Bw1w1 + e~fw0 × ~f + e2 ~f(~f ~B)− e2 ~f2 ~B = ~0. (6.3)
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Since equations (6.3) do not contain derivatives of ~B with respect to w0, they can be
considered as a system of ODE with respect to the variable w1. Multiplying (6.3) by ~f we
arrive at the relation ( ~B ~f)w1w1 = 0, whence

~B ~f = v1(w0)w1 + v2(w0). (6.4)

In (6.4) v1, v2 are arbitrary smooth enough functions.
With account of (6.4) system (6.3) reads

~Bw1w1 − e2 ~f2 ~B = e~f × ~fw0 − e2(v1w1 + v2)~f.

The above linear system of ODE is easily integrated. Its general solution is given by
the formula

~B = ~g(w0) cosh e|~f |w1 + ~h(w0) sinh e|~f |w1 + e−1|~f |−2 ~fw0 × ~f+

|~f |−2(v1w1 + v2)~f, (6.5)

where ~g,~h are arbitrary smooth functions.
Substituting (6.5) into (6.4) we get the following restrictions on the choice of the

functions ~g, ~h:

~f~g = 0, ~f~h = 0. (6.6)

Thus, provided ~Cw1 = 0, a general solution of the system of ODE (6.3) is given by the
formulae (6.5), (6.6). Substituting (6.5) into the initial ansatz (6.1) we obtain the following
family of exact solutions of YME:

~Aµ = kµ{~g(kx) cosh e|~f |cx + ~h(kx) sinh e|~f |cx + e−1|~f |−2 ~̇f × ~f+

(v1(kx)cx + v2(kx))~f}+ bµ
~f

where ~f(kx), ~g(kx), ~h(kx), v1(kx), v2(kx) are arbitrary smooth functions satisfying

(6.6), ~̇f = d~f
dω0

.

The case ~C = (w1 +v0(w0))~f(w0) is treated in analogous way. As a result, we obtain
the following family of exact solutions of YME:

~Aµ = kµ{(cx + v0(kx))
1
2 [~g(kx)J 1

4
(
ie

2
|~f |(~c~x + v0(kx))2)+

~h(kx)Y 1
4
(
ie

2
|~f |(cx + v0(kx))2)] + (v1(kx)cx + v2(kx))~f + e−1|~f |−2 ~̇f × ~f}+

bµ(cx + v0(kx))~f,

where ~f(kx), ~g(kx), ~h(kx), v0(kx), v1(kx), v2(kx) are arbitrary smooth functions
satisfying (6.6), J 1

4
(w), Y 1

4
(w) are the Bessel functions.
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Another effective ansatz for the Yang-Mills field is obtained if one replaces in (6.1) cx
by bx

~Aµ = kµ
~B(kx, bx) + bµ

~C(kx, bx). (6.7)

Substitution of (6.7) into YME yields the following system of PDE for ~B, ~C:

~Bw1w1 − ~Cw0w1 − e( ~B × ~Cw1 + 2 ~Bw1 × ~C + ~C × ~Cw0) + e2 ~C × (~C × ~B) = ~0. (6.8)

We succeeded in integrating system (6.8), provided ~C = ~f(w0). Substituting the
result obtained into (6.7), we come to the following family of exact solutions of YME:

~Aµ = kµ{(~g + |~f |−1~g × ~fbx) cos(e|~f |bx) + (~h + |~f |−1~h× ~fbx) sin(e|~f |bx)+

e−1|~f |−2 ~̇f × ~f + (v1(kx)bx + v2(kx))~f}+ bµ
~f,

where ~f(kx), ~g(kx), ~h(kx), v1(kx), v2(kx) are arbitrary smooth functions.
Besides that, we obtained the following class of exact solutions of YME:

~Aµ = kµ~e1v0(kx)u2(bx) + bµ~e2u(bx),

where ~e1 = (1, 0, 0), ~e2 = (0, 1, 0); v0(kx) is an arbitrary smooth function; u(bx) is a
solution of the nonlinear ODE ü = e2u5, which is integrated in elliptic functions.

In conclusion of this Section we will obtain a generalization of the plane-wave Coleman
solution [15]

~Aµ = kµ(~f(kx)bx + ~g(kx)cx). (6.9)

It is not difficult to verify that (6.9) satisfy YME with arbitrary ~f,~g.
Evidently, solution (6.9) is a particular case of the ansatz

~Aµ = kµ
~B(kx, bx, cx). (6.10)

Substituting (6.10) into YME we get

~Bw1w1 + ~Bw2w2 = ~0, (6.11)

where w1 = bx, w2 = cx.
Integrating the Laplace equations (6.11) and substituting the result obtained into

(6.10) we have

~Aµ = kµ(~U(kx, bx + icx) + ~U(kx, bx− icx)).

Here ~U(kx, z) is an arbitrary analytical with respect to z function. Choosing ~U =
1
2(~f(kx)− i~g(kx))z we get Coleman solution (6.9).



72 V. LAHNO, R. ZHDANOV and W. FUSHCHYCH

7 Conclusion

Thus, starting from the invariance of YME under the Poincaré group we have obtained
wide families of its exact solutions including arbitrary functions. In our future papers we
intend to describe exact solutions of YME invariant under the extended Poincaré group
and conformal group.

Besides that, we will study exact solutions which correspond to the conditional and
non-local symmetries of the Yang-Mills equations (1.1)
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