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Non–Lie Ansatzes for Nonlinear Heat Equations
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Abstract

Operators of non–local symmetry are used to construct exact solutions of nonlinear
heat equations.

A method for finding of new classes of ansatzes reducing nonlinear wave equations to a
systems of ordinary differential equations was suggested in [1]. This approach is based on
non–local symmetry of differential equations. In the present paper we apply this method
to the nonlinear heat equation.

Let us consider the equation

ut − uxx = H(u), (1)

where H(u) is some smooth function.
The following system

v1
t + v1

3v
2 = v2

3v
1,

v2 − v1
3v

1 = H(x3),
(2)

where u ≡ x3, ∂u/∂x ≡ v1, ∂u/∂t ≡ v2, corresponds to the equation (1) if we use the
approach suggested in [1].

Theorem 1 The system (2) is Q–conditionally invariant with respect to the operator

Q = ∂x3 + 2F exp
(
−F 2

)
v1∂

v1+2F exp
(
−F 2

)
v2 +

exp
(
−F 2

)
v2 − 1

F

 ∂
v2

(3)

if

H(x3) = exp
(
F 2(x3)

)
,

where F (x3) = Φ−1(x3), Φ(x3) =
∫

exp
(
(x3)

2
)
dx3.
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Proof. We use the criterion of Q–conditional invariance [2, 3]. Thus we have

Q̃(v2 − v1
3v

1 − exp
(
F 2(x3)

)
) =

2F exp
(
−F 2

)
v2 +

(
exp

(
−F 2

)
v2 − 1

)
/F−

v1
(
2F exp

(
−F 2

)
v1 − 4F 2 exp

(
−2F 2

)
v1 + 2F exp

(
−F 2

)
v1
3

)
−

2v1
3F exp

(
−F 2

)
v1 − 2F,

(4)

where Q̃ is the prolongation of the operator Q.

Taking into account

v2 = 2F exp
(
−F 2

)
(v1)2 + exp

(
F 2
)
,

v1
3 = 2F exp

(
−F 2

)
v1,

v2
3 = 2F exp

(
−F 2

)
v2 +

(
exp

(
−F 2

)
v2 − 1

)
/F

we obtain

Q̃(v2 − v1
3v

1 − exp
(
F 2(x3)

)
) =

2F exp
(
−F 2

) (
2F exp

(
−F 2

)
(v1)2 + exp

(
F 2
))

+

(
exp

(
−F 2

) (
2F exp

(
−F 2

)
(v1)2 + exp

(
F 2
))
− 1

)
/F−

v1
(
2 exp

(
−2F 2

)
v1 − 4F 2 exp

(
−F 2

)
v1 + 4F 2 exp

(
−2F 2

)
v1
)
−

4F 2 exp
(
−2F 2

)
(v1)2 − 2F ≡ 0.

Similarly we receive

Q̃
(
v1
t + v1

3v
2 − v2

3v
1
)
≡ 0. (5)

Q.E.D.
The operator (3) generates the ansatz

v1 = exp
(
F 2
)
ϕ1(t),

v2 = exp
(
F 2
)
(2Fϕ2(t) + 1),

(6)

where ϕ1, ϕ2 are unknown functions.
Substitution of (6) into (2) yields the system of two ordinary differential equations for

ϕ1, ϕ2

dϕ1/dt = 2ϕ1ϕ2,

ϕ2 = ϕ2
1

(7)
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whose general solution has the form

ϕ1 = 1/
√

C − 4t,

ϕ2 = 1/(C − 4t).
(8)

Integrating the overdetermined but compatible system

ux = exp
(
F 2(u)

)
/
√

C − 4t,

ut = exp
(
F 2
)
(2F/(C − 4t) + 1)

(9)

we get the exact solution of the nonlinear heat equation with the function H(u) =
exp

(
F 2(u)

)
u = Φ

±6x−
(√

C − 4t
)3

+ C1

6
√

C − 4t

 . (10)

where Φ(z) =
∫

exp z2dz. The maximal invariance algebra of the equation

ut − uxx = exp
(
F 2(u)

)
(11)

is a 2–dimensional Lie algebra whose basic elements are given by the formulae

Px = ∂x, Pt = ∂t.

It is obvious that the solution (10) is not an invariant solution.
Next we consider the equation

uxx = F (ut). (12)

The associated system has the form

v1
2 = v2

1,

v2
2 = F (v1),

(13)

where v1 ≡ ut, v2 ≡ ux, x1 ≡ t, x2 ≡ x. The following statement has been proved by
means of Lie‘s algorithm [2].

Theorem 2 The system (13) is invariant with respect to the operator

Q = −x1∂x1 + v2∂x2 + v1∂v1 (14)

if
F (v1) = 1/ln v1.

The ansatz corresponding to the operator (14) is as follows

v1 = ϕ1(v2)/x1,

v2 = x2/(ϕ2(v2)− lnx1).
(15)



NON–LIE ANSATZES FOR NONLINEAR HEAT EQUATIONS 93

Substituting (15) into (13) we obtain the system of ordinary differential equations

lnϕ1 − ϕ2 = v2dϕ2/dv2,

dϕ1/dv2 = v2.
(16)

The general solution of the system (16) has the form

ϕ1 =
1
2

(
(v2)2 + C

)
,

ϕ2 = ln
((v2)2 + C)

2e2
+

C1

v2
+

2C

v2

∫
dv2

(v2)2 + C
. (17)

Setting C = 0 in (17) we obtain the system

ut = (ux)2/(2t),

ux = 2x/

(
ln

(ux)2

2e2
+

C1

ux
− ln t

)
. (18)

To construct the solution of the equation

uxx = 1/lnut (19)

it is necessary to integrate the system (18).
The following formula

exp (1/z) = θ2/(2t),

θ = 2x/

(
ln

θ2

2e2
+

C1

θ
− ln t

)
(20)

gives a parametric solution of the equation

zt +
(
z−2 exp (z−1)zx

)
x

= 0

where θ is a parameter.
It should be noted that the ansatzes (6) and (15) which reduce the equation (11) and

(19) respectively cannot be obtained by means of the classical Lie method.
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