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Abstract - BP neural networks are employed to estimate the static 
axle weight of moving vehicles. On the basis of analyzing the 
characteristics of dynamic tire force, the influence of dynamic 
tire force is briefly introduced on the weighing accuracy. The 
three-layer BP neural networks are designed to process the axle 
weight signal. The selection of parameters of neural networks is 
analyzed. The weighing data of three two-axle trucks are used to 
train and test the developed neural networks. The results show 
that the proposed three-layer BP neural networks are effective. 
The max axle weight error is less than 5.18%. 

Keywords- Weigh-In-Motion; BP neural networks; Dynamic 
tire force 

I. INTRODUCTION 
With the rapid development of traffic and transportation, 

the increasing overweight vehicles have become a serious 
problem, which shorten the lifespan of roads and bridges, 
cause traffic accidents and result in great loss in the state’s tax 
income. Jinfang Wang[1] introduces the various harms of the 
overweight vehicles. In order to improve safety on road, 
protect road infrastructure and enforce traffic law, it is 
necessary and important to develop Weigh-In-Motion (WIM) 
method to measure axle weight of vehicles reliably, accurately 
and fast.  

Many factors affect the measurement accuracy of the axle 
weight. F.Scheuter[2] discusses the influences of vehicle 
suspension, vehicle speed, tyre spring and road evenness on 
the measuring accuracy. Various approaches have been 
proposed to improve weighing accuracy. M.Niedzwiecki[3] 
compares the performances of simple maximum value 
detection method, system identification method and extended 
Kalman filtering method on laboratory models. Mangeas.M[4] 
uses feed forward neural networks to fuse multiple-sensor 
measurements into a single value and improves estimation 
accuracy of the static weight. D.Cebon[5] introduces the 
Multiple-Sensor Weigh-in-motion (MS-WIM) system in 
which many strip sensors are installed along a length of 25 to 
50m in the road. These two methods are based on the fusion of 
multiple-sensor measurements. The design of sensor array and 
the calibration of sensors are difficult.  

Artificial neural networks possess strong nonlinear 
mapping, adaptive learning, fault-tolerance performance and 
robustness. They are widely used in pattern recognition, data 
processing, fault diagnosis, and so on. In the following 
sections, the characteristics of dynamic tire forces are 
analysed; the three-layer BP neural networks are employed to 
process WIM data; the pre-processing of the signals of WIM 

is performed; and the selection of parameters is analysed in 
neural networks. Real experiments are conducted to evaluate 
the performance of the proposed BP neural networks. 

II. DYNAMIC TIRE FORCES 
When vehicle keeps static, the force of tires exerting on the 

ground is equal to the static axle weight (which is regarded as 
the real axle weight in practice). When vehicle moves, the tire 
force exerting on the ground contains the dynamic tire forces 
beside the static axle weight. The quarter-car model [6] is often 
used to study the dynamic tire forces. Fig.1 shows the 
quarter-car model. 

Referencing the approach described in Appendix B of [6], 
we can analyze the characteristics of dynamic tire forces by 
data simulation. Zhou zhifeng[7] uses quarter-car model and 
road roughness model to simulate dynamic tire forces. The 
dynamic tire forces are a kind of low frequency signals whose 
amplitude can reach 30% of the real axle weight and lowest 
frequency can reach 1.5 Hz. The amplitudes and frequencies of 
dynamic tire forces vary with vehicle speed, load of vehicle, 
the position of load, vehicle suspension, tyre spring and road 
evenness, and so on. When the width (direction of vehicle 
movement) of scale platform is certain, the quicker the vehicle 
speed the shorter the sampling time. For example, when the 
width of weighing platform is 760 mm, the available width is 
about 490 mm taking account of the tire-pavement contact area. 
When the vehicle runs across the platform at 10 km/h, the valid 
sampling time is 178 ms and only 0.54 times of the cycle of the 
3 Hz dynamic tire force. The whole cycles of the dynamic 
forces can not be obtained during the finite sampling time.  

 
 
 
 
 
 
 
 
 

 

Fig.1 Quarter-car model 
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mu: Unsprung mass 
cs: Suspension damping 
ct: Tire damping 
ks: Suspension stiffness 
kt: Tire stiffness 
zs: Displacement of ms from the static equilibrium position 
zu: Displacement of mu from the static equilibrium 

position 
u: Displacement of road profile input 
F: Tire force exerting on the ground 

III. STRUCTURE OF BP NEURAL NETWORKS 
It has been theoretically proved that three-layer neural 

networks can realize arbitrarily complicated nonlinear 
mapping problems [6]. BP neural networks are a kind of 
multilayer forward neural networks based on back propagation 
algorithm. It is reported that about 90% applications of 
artificial neural networks are based on BP algorithm. In this 
paper, we develop a three-layer BP neural network shown in 
Fig.2 to process the axle weight signal of vehicle in motion. In 
Fig.2, ix ( 41 ≤≤ i ) denotes the element of input vector, 

ib ( 101 ≤≤ i ) denotes the bias values of neurons in hidden 
layer, b denotes the bias value of the output neuron, 

)101,41( ≤≤≤≤ jmwmj denotes the synaptic weights of 
neurons between the input layer and hidden layer, 

)101(1 ≤≤ jw j denotes the synaptic weights of 
neurons between the hidden layer and output layer, w  
denotes the estimation of static axle weight. 

The inputs of neural networks should contain the 
information of the weighed vehicle if possible. One approach 
is to directly regard the axle weight signals as the input vectors 
of neural networks. When the sampling interval is certain, the 
dimensions of input vectors will be not equal since the real 
velocities of vehicle are impossibly equal every time, which 
will result in the failure of neural networks. Furthermore, too 
many inputs of the input layer will influence the real-time 
performance of the neural networks. In this paper, the 
velocity, the wheelbase, the average value and the maximum 
value of the axle weight signal are selected as the inputs. 

 

 
Fig.2 Structure of the three-layer BP neural networks for WIM 

It is difficult to confirm the number of neurons in hidden 
layer. The accuracy can be improved by increasing the number 
of neurons in hidden layer, but it will bring vast calculation 
with the increasing of number of neurons, which willinfluence 
the real-time application of neural networks. According to the 
empirical formula and the experiment research, the number of 
neurons in hidden layer is 10 in this paper. 

The transfer function of neurons in hidden layer can be 
described by  
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The transfer function of output layer can be presented as 
xxf =)(2 .                  (3)          

The estimation of the static axle weight can be written as 
)( 22 bMWfw += ,              (4)  

where ],,,[ 1,101,21,12 wwwW = . 

IV. PREPROCESSING OF THE SAMPLED SIGNALS 
In real experiments, the scale platform has dimensions of 

3m and 0.75m for length and width (direction of vehicle 
movement). Three two-axle trucks (named A, B and C) are 
used. Table I lists the times of trucks crossing the scale 
platform at the different speeds with the different loads. The 
sampling frequency is 10 KHz. 

Taking account of the contact area of the tyre, we think the 
first maximum point of the ascent segment denote tyre’s 
entering the scale platform entirely and the first maximum 
point of the descent segment denote tyre’s beginning to leave 
the platform. We select the data segment between the two 
maximum points as the axle weight signal, and computing the 
average value and the maximum value of the axle weight 
signal. The dashed line depicts the selection of the axle weight 
signal in Fig.3. 

TABLE I times of trucks crossing the scale platform at different speeds with 
different loads 

 
Velocity (km/h) 

10 15 20 25 30 

Truck A (times) 1000kg load 40 40 40 40 40 

Truck B (times)
1000kg load 29  29  29 

2000kg load 29  29  29 

Truck C (times)
0kg 23  23  23 

15000kg load 23  23  23 
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Fig.3 Selection of the axle weight signal from the sampled signal 

Since we can’t know the velocity and wheelbase of the 
trucks crossing the scale platform in real practice, we compute 
the velocity and wheelbase using the sampled signal. 
According to the sampling interval, the length of the axle 
weight signal, the width of the scale platform and the interval 
of front axle and rear axle crossing the scale platform, we can 
calculate the vehicle velocity and the wheelbase. The sample 
vector of the BP neural networks consists of the average value, 
the maximum value, the velocity and the wheelbase. We can 
extract two sample vectors from every sampled signal. After 
preprocessing, we obtain 400 sample vectors of truck A, 348 
sample vectors of truck B and 276 sample vectors of truck C. 

V. REAL SIGNALS EXPERIMENTS 
In order to testing the performance of the developed BP 

neural networks, two kinds of experiments are performed. 
Three trucks’ sample vectors are trained and tested, 
respectively. The 90% sample vectors of truck A are randomly 
selected as the training samples and the other 10% sample 
vectors are employed as the test samples. The 90% sample 
vectors of truck B are randomly selected as the training 
samples and the other 10% sample vectors are employed as 
the test samples. The 90% sample vectors of truck C are 
randomly selected as the training samples and the other 10% 
sample vectors are employed as the test samples. The max 
axle weight errors of the test samples of truck A, truck B and 
truck C are less than 0.61%, 1.45% and 0.85%, respectively.  

The total sample vectors of three trucks are split into two 
parts. One part (921 samples are extracted from the total 
sample vectors, in which 360 samples are randomly extracted 
from truck A, 313 samples are randomly extracted from truck 
B and 248 samples are randomly extracted from truck C) is 

used to train BP neural networks. The other part (103 
remainder samples) is used to test the performance of the 
trained BP neural networks. The max axle weight errors of the 
test samples of truck A, truck B and truck C are less than 
3.48%, 5.18% and 2.46% respectively. 

It can be see that the developed BP neural networks are 
effective. When the training samples and the test samples 
come from the same truck, the max error is 1.45%; when the 
training samples come from three trucks and the test samples 
come from the remainder samples of three trucks, the max 
error is 5.18%. 

VI. CONCLUSION 
In this paper, the factors affecting the weighing accuracy 

of the axle weight are briefly introduced. The three-layer BP 
neural networks containing four input neurons, ten hidden 
layer neurons, and one output neuron, are developed. The 
average value and max value of the axle weight signal, the 
velocity and the wheelbase are regarded as the inputs of BP 
neural networks. By preprocessing, the samples of three 
two-axle trucks are used to train and test the neural networks. 
The results show that the developed BP neural networks are 
effective, and the max axle weight error is less than 5.18%. 
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