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Abstract

We define a Hopf C∗-algebra associated with an action of the quantum group SUq(1, 1)
on a two-parameter quantum deformation of the unit disc, which has a left comodule
structure over this Hopf C∗-algebra.
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Introduction

It was shown in [10] that the quantum group SUq(1, 1) does not exist on the C∗-algebra
level. By using the idea of [6], we construct a certain algebra Aq, the C∗-completion of
which, St(Aq), is endowed with a Hopf C∗-algebra structure. We show that there exists
an embedding of the algebra Aq into a localization of the algebra SUq(1, 1). The Hopf C∗-
algebra structure of St(Aq) is induced by the Hopf ∗-algebra structure of SUq(1, 1). The
two parameter quantization of the algebra of functions on the unit disc, considered in [5],
and its particular case – the one parameter deformation [8] — have a comodule structure
over St(Aq), which can be viewed as a noncommutative deformation of the action of the
group SU(1, 1)/Z2 on the algebra of continuous functions on the unit disc.

In Section 1 we construct the algebra Aq, give all its irreducible representations, and
construct the algebra St(Aq). We prove that there is an imbedding of Aq into a localization
of SUq(1, 1). In Section 2 we introduce a Hopf C∗-algebra structure on St(Aq). In Section
3 we prove that the two parameter deformation of the algebra of functions on the unit
disc has a left comodule structure over St(Aq).
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1 C∗-algebra associated with SUq(1,1)

Let Aq denote a unital algebra with involution over the field C with generators x, x∗, y, y∗

satisfying the relations

(1− y∗y)− q2(1− yy∗) = (1− q2)(1− yy∗)(1− y∗y), (1)
xx∗ + (1− q2)yy∗ = 1, (2)

x∗x(1 + (q−2 − 1)y∗y) = 1, (3)
xyx∗ = q2y, (4)

where q ∈ R, 0 < q ≤ 1.
By a ∗-representation of the algebra Aq on a Hilbert space H, we will understand a

mapping π : Aq −→ L(H) to the algebra of linear operators on H such that π(x∗) = π(x)∗

and π(y∗) = π(y)∗. For a representation π, we denote X = π(x) and Y = π(y).

Lemma 1 (cf. [4]) Let π : Aq −→ L(H) be a ∗-representation of the algebra Aq. Then
Ker(Y ∗Y ) = Ker(Y Y ∗), Ker(1 − Y ∗Y ) = Ker(1 − Y Y ∗). If we set H′ = Ker(Y ∗Y ),
H′′ = Ker(1− Y ∗Y ), then the Hilbert spaces H′ and H′′ are invariant with respect to Aq.

Proof. The equalities Ker(Y ∗Y ) = Ker(Y Y ∗) and Ker(1 − Y ∗Y ) = Ker(1 − Y Y ∗)
immediately follow from (1). We will prove the second part. A vector v ∈ H′ if and
only if Y Y ∗(v) = Y ∗Y (v) = 0. Hence Y Y ∗(Y (v)) = Y (Y ∗Y (v)) = 0, and so Y (v) ∈ H′.
Similarly we show that Y ∗(v) ∈ H′. It follows from (2) and (3) that v ∈ H′ if and only
if X∗X(v) = XX∗(v) = v. So XX∗(X(v)) = X(X∗X(v)) = X(v) showing that H′ is
invariant with respect to X. It can be similarly shown that H′ is invariant with respect
to X∗.

By the same type of argument we can also show that H′′ is invariant with respect to
Aq. 2

Corollary 1 If π : Aq −→ L(H) is a ∗-representation of Aq, then

H = H′ ⊕H′′ ⊕H⊥,

where H⊥ is the orthogonal complement to the Hilbert space H′ ⊕H′′.

Theorem 1 Let 0 < q < 1 and ρ be an irreducible ∗-representation of the algebra Aq.
Then ρ is unitarily equivalent to:

a) a representation of the series of one-dimensional representations on H = C:

ρχ0 (x) = eiχ, ρχ0 (x∗) = e−iχ,

ρχ0 (y) = ρχ1 (y∗) = 0, χ ∈ R/2πZ;
(5)

b) a representation of the series of one-dimensional representations on H = C:

ρϕψ1 (x) = qeiϕ, ρϕψ1 (x∗) = qe−iϕ,

ρϕψ1 (y) = eiψ, ρϕψ1 (y∗) = e−iψ, ϕ, ψ ∈ R/2πZ;
(6)
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c) a representation of the series of infinite dimensional representations on H= l2(Z)
given on an orthonormal basis in H, {en}n∈Z, by

ρκτ
∞ (x) . en = eiκq

(
1 + τ2q2(n+1)

1 + τ2q2(n+2)

)1/2

en+2,

ρκτ
∞ (x∗) . en = e−iκq

(
1 + τ2q2(n−1)

1 + τ2q2n

)1/2

en−2,

ρκτ
∞ (y) . en =

1
(1 + τ2q2(n+1))1/2

en+1,

ρκτ
∞ (y∗) . en =

1
(1 + τ2q2n)1/2

en−1,

(7)

where κ ∈ R/2πZ, τ ∈
[

q
1 + q ,

1
1 + q

)
.

Proof. Because ρ is an irreducible representation, we use Corollary 1 and consider ρ
restricted to H′, H′′, and H⊥. We use X0, Y0, X1, Y1, and X,Y to denote the restriction
of the operators ρ(x), ρ(y) to the corresponding subspaces.

Because Y ∗
0 Y0 = Y0Y

∗
0 = 0, we see that Y0 = 0. We also have from (2) and (3) that

X0X
∗
0 = X∗

0X0 = I. This means that X0 is a unitary operator and it commutes with all
the elements of Aq. Because ρ is irreducible, this implies that ρ is unitarily equivalent to
(5).

Now we consider the operators X1 and Y1. By definition of H′′, Y ∗
1 Y1 = Y1Y

∗
1 = I,

whence Y1 is unitary. It again follows from (2) and (3) that X∗
1X1 = X1X

∗
1 = q2I, so

the operator q−1X1 is unitary. By using (4), we see that X1Y1 = Y1X1 and this means
that the algebra Aq is commutative, whence H′′ is one-dimensional, and this gives the
representation (6).

Consider the restrictions X and Y to H⊥. Because Ker X = Ker Y = ∅, in the polar
decomposition X = U |X| and Y = V |Y |, the operators U and V are unitary. It readily
follows from (3) that

|X|2 =
(
1 + (q−2 − 1)|Y |2

)−1
. (8)

From (1) we can see that

V |Y |2V ∗ =
q2|Y |2

1− (1− q2)|Y |2
, (9)

which, in its turn, implies that

V ∗|Y |2V =
|Y |2

q2 + (1− q2)|Y |2
. (10)

By finding the expressions for XX∗ and X∗X in terms of Y Y ∗ and Y ∗Y correspondingly
from (2) and (3), substituting them into (1), and then using (8), we find that

U |Y |2U∗ =
q4|Y |2

1− (1− q2)(1 + q2)|Y |2
. (11)

Now, if we use (9) to calculate V 2|Y |2V ∗2 and compare with (11), we see that V 2|Y |2V ∗2 =
U |Y |2U∗, whence, U∗V 2|Y | = |Y |U∗V 2. Rewrite (4) as U |X|V |Y ||X|U∗ = q2V |Y | and



30 Y. CHAPOVSKY

use (8) and (10) to get

V
|Y |

(q2 + (q−2 − q2)|Y |2)1/2
= U∗V U

|Y |
(q2 + (q−2 − q2)|Y |2)1/2

.

This relation shows that UV = V U . Recalling that U∗V 2 commutes with |Y |, we see that
the operator U∗V 2 commutes with any operator from ρ(Aq). Because ρ was assumed to
be irreducible, U∗V 2 = e−iκI since the operator is unitary, and consequently

U = eiκV 2 (12)

for some κ ∈ R/2πZ.
Let Aqy denote the unital subalgebra of Aq generated by y and y∗ and ρy denote

the restriction of ρ to Aqy. Then the representation ρ is irreducible if and only if ρy is
irreducible. It is clear that if ρy is irreducible, then ρ is irreducible. Suppose that ρy
is reducible, i.e. there is Z ∈ L(H⊥), which is not a scalar operator, and such that Z
commutes with Y and Y ∗. This means that Z commutes with Y ∗Y and, hence, with |Y |,
and also with V . But then, as it follows from (8) and (12), Z will commute with |X| and
U , which means that Z commutes with X and X∗, hence ρ is reducible.

These considerations allow to consider only irreducible representations of (1) and then
use (8) and (12). Using the results of [9] we finally get the representations given by (7).
. 2

Corollary 2 If ρ is an irreducible ∗-representation of the algebra Aq, then: q ≤ ‖ρ(x)‖ ≤
1, ‖ρ(y)‖ ≤ 1, and ‖ρ(xy∗)‖ ≤ q.

This corollary implies, in particular, that the algebra Aq is ∗-bounded (see, for example,
[3]) and so we can define a norm on Aq by setting, for a ∈ Aq, ‖a‖ = supρ(‖ρ(a)‖), where
ρ runs over the set of all irreducible representations of Aq. By completing Aq with respect
to this norm, we get a C∗-algebra which will be denoted by St(Aq).

Actually, the C∗-norm in St(Aq) is given by the infinite dimensional representations
(7). To prove that we need the following lemma.

Lemma 2 Let X and Y be weighted shift operators on l2(Z), given on an orthonormal
basis {en}n∈Z by

X(en) = c1λnen+2, λ−∞ > . . . > λ−1 > λ0 > λ1 > . . . > λ∞,

Y (en) = c2µnen+1, µ−∞ < . . . < µ−1 < µ0 < µ1 < . . . < µ∞,

with λn, µn ∈ R, c1, c2 ∈ C, and finite λ±∞ = limn−→±∞ λn, µ±∞ = limn−→±∞ µn.
Then there exists a sequence of vectors {e′m}m∈Z−, ‖e′m‖ = 1, and a sequence of vectors
{e′′m}m∈Z+, ‖e′′m‖ = 1, such that

lim
m−→−∞

‖X(e′m)− c1λ−∞e
′
m‖ = 0,

lim
m−→−∞

‖Y (e′m)− c2µ−∞e
′
m‖ = 0

(13)

and
lim

m−→∞
‖X(e′′m)− c1λ∞e

′′
m‖ = 0,

lim
m−→∞

‖Y (e′′m)− c2µ∞e
′′
m‖ = 0.

(14)



A HOPF C∗-ALGEBRA ASSOCIATED WITH AN ACTION OF SUq(1, 1) 31

Proof. Since constructions of the sequences {e′m} and {e′′m} are similar, we will only
construct the sequence {e′′m}m∈Z. For each m > 0, m ∈ Z, set

e′′m =
1√
m

2m∑
i=m+1

ei.

Then ‖em‖ = 1 for all m and

‖X(e′′m)− λ∞e
′′
m‖ =

1√
m

∥∥∥∥∥∥
2m∑

i=m+1

(X(ei)− c1λ∞ei)

∥∥∥∥∥∥ =

|c1|√
m

∥∥∥∥∥∥λ2m−1e2m+1 + λ2me2m+2 − λ∞(em+1 + em+2) +
2m∑

i=m+3

(λ∞ − λi)ei

∥∥∥∥∥∥ ≤
|c1λ−∞|√

m
(
√

2 + 2) + (λ2m − λ∞),

whence the first limit of (13) follows. A similar estimate holds for the second limit in (13).
. 2

Theorem 2 The C∗ norm on the C∗-algebra St(Aq) is given, for any a ∈ St(Aq), by

‖a‖ = sup
τ ∈ [ q

1+q
, 1
1+q

)

κ ∈ S1

‖ρκτ
∞ (a)‖.

Proof. We will prove that, for any element a in Aq and any fixed τ , there exists κ0(χ) ∈
R/2πZ such that ‖ρκ0τ

∞ (a)‖ ≥ |ρχ0 (a)| and, similarly, there exists such κ1(ϕ) ∈ R/2πZ
that ‖ρκ1τ

∞ (a)‖ ≥ |ρϕ1ψ|. Indeed, set

λn = q

(
1 + τ2q2(n+1)

1 + τ2q2(n+2)

)1/2

, c1 = eiχ,

µn =
1

(1 + τ2q2(n+1))1/2
, c2 = 1,

and λ−∞ = 1, µ−∞ = 0. It follows from Lemma 2 that there is a sequence {e′m} such that
limm−→∞ ‖ρχτ∞ (a)(e′m) − ρχ0 (a)e′m‖ −→ 0, whence we get the first part of the proof. The
second part is proved similarly. 2

Lemma 3 Let π : St(Aq) −→ L(H) be an irreducible representation on a Hilbert space H.
Let J denote the commutator ideal in St(Aq). Then either π(J ) = 0 or π(J ) = KH,
where KH is the C∗-algebra of all compact operators on H.

Proof. By using Theorem 1, we see that π(J ) = 0 if and only if π is a one dimensional
representation. Consider the case when dim(H) = ∞. Denote Y = π(y). It readily
follows from Theorem 1 that [Y, Y ∗] ∈ π(J )∩KH. We will show that π(J ) is irreducible.
Suppose not, i.e. there exists a nonscalar operator Z ∈ L(H), which commutes with all the
elements of π(J ). Let Y = V |Y | be the polar decomposition of Y . Because Z commutes
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with [Y, Y ∗], it follows from (9) that it commutes with |Y |. Relation (9) also implies that
if Z commutes with [Y, Y ∗Y ] and |Y |, then it commutes with V . This means that Z
commutes with any element of π(St(Aq)) which is a contradiction since π is irreducible.

Because π(J ) is irreducible and contains a compact operator, π(J ) = KH. 2

Corollary 3 The C∗-algebra St(Aq) is a GCR-C∗-algebra and, hence, a C∗-algebra of
type I.

Recall that the quantum group SUq(1, 1) is a Hopf ∗-algebra generated by elements of
the matrix T = (tij)i,j=1,2 which satisfy the following relations:

t11t12 = qt12t11, t11t21 = qt21t11, t11t22 − t22t11 = (q − q−1)t12t21,

t12t21 = t21t12, t12t22 = qt22t12, t21t22 = qt22t21,

t11t22 − qt12t21 = 1.

(15)

The Hopf ∗-algebra structure is defined by the comultiplication ∆ and counit ε given by

∆(tij) =
2∑

k=1

tik ⊗ tkj , ε(tij) = δij , (16)

and the antipode S and involution ∗:

S

(
t11 t12

t21 t22

)
=

(
t22 −q−1t12

−qt21 t11

)
,

(
t∗11 t∗12
t∗21 t∗22

)
=

(
t22 qt21

q−1t12 t11

)
. (17)

It follows from (15) that

t11t22 − q2t22t11 = 1− q2, (18)
t22t11 − q−1t12t21 = 1. (19)

Now consider a unital algebra, SUq(1, 1)l, generated by tij , i, j = 1, 2, and t−1
11 , t−1

22

subject to relations (15) and

t11t
−1
11 = t−1

11 t11 = 1, t22t
−1
22 = t−1

22 t22 = 1.

Let
x′ = t−1

22 t11, y′ = q−1t−1
22 t12, x′∗ = t22t

−1
11 , y′∗ = t21t

−1
11 , (20)

and let SUq(1, 1)l0 denote the subalgebra of SUq(1, 1)l generated by x′, x′∗, y′, y′∗.

Theorem 3 The algebra Aq is ∗-isomorphic to the algebra SUq(1, 1)l0, namely, the map-
ping ι : Aq −→ SUq(1, 1)l0, defined on the generators by ι(x) = x′, ι(y) = y′ can be extended
to a well defined ∗-isomorphism.

Proof. First of all we show that ι is well defined, i.e. x′, x′∗, y′, y′∗ satisfy (1) – (4).
Indeed, by using (18), we get

x′x′
∗ = t−1

22 t11t22t
−1
11 = t−1

22 ((1− q2) + q2t22t11)t−1
11 = (1− q2)t−1

22 t
−1
11 + q2,
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and so
1− q2

x′x′∗ − q2
= t11t22. (21)

Similarly,

(x′∗x′)−1 = t−1
11 t22t11t

−1
22 = t−1

11 (q−2t11t22 − (q−2 − 1))t−1
22 = q−2 − (q−2 − 1)t−1

11 t
−1
22 .

Whence
(1− q2)x′∗x′

x′∗x′ − q2
= t22t11. (22)

By using (19), we see that

y′y′
∗ = q−1t−1

22 t12t21t
−1
11 = t−1

22 (t22t11 − 1)t−1
11 = 1− t−1

22 t
−1
11 ,

which yields
(1− y′y′

∗)−1 = t11t22. (23)

In the same way, by applying the last relation of (15), we obtain

y′
∗
y′ = qt21t

−1
11 t

−1
22 t12 = qt−1

11 t21t12t
−1
22 = t−1

11 (t11t22 − 1)t−1
22 = 1− t−1

11 t
−1
22 ,

hence
(1− y′

∗
y′)−1 = t22t11. (24)

At this point, relation (1) readily follows if (23) and (24) are used in (18), relations (2)
and (3) follow directly from (21), (23) and (22), (24), respectively. Relation (4) follows
from

x′y′x′
∗ = t−1

22 t11t12t
−1
22 t22t

−1
11 = t−1

22 t11t12t
−1
11 = qt−1

22 t12 = q2y′.

Because ι maps elements of Aq into generators of SUq(1, 1)l0, it is certainly surjec-
tive. We will show that it is also injective. It was shown in [10] that an irreducible
∗-representation of SUq(1, 1) is unitarily equivalent to either a one dimensional represen-
tation

π0(t11) = eiϕ, π0(t12) = 0, ϕ ∈ R/2πZ, (25)

or to an infinite dimensional representation π∞ on l2(Z), given on an orthonormal basis
{fn}n∈Z by

πb∞(t11) . fn =
√

1 + |b|2q2(n−1)fn−1, πb∞(t12) . fn = bqn fn, b ∈ C. (26)

If we extend these representations to SUq(1, 1)l0, then ι defines representations of Aq, which
are unitarily equivalent to (5) and (7).

Assuming now that ι(a) = 0 for some a ∈ Aq would mean, in particular, that ρκτ
∞ (a) =

0 and, since, as it follows from Theorem 2, ‖a‖ = 0, a = 0. 2

2 Hopf C∗-algebra associated with SUq(1,1)

Let B, D be C∗-algebras of the type I. It follows from [7] that a C∗-cross-norm on the
algebraic tensor product B ⊗alg D is unique. In the rest of the paper, we will denote
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by B ⊗ D the C∗ algebra obtained from B ⊗alg D by completing it with respect to this
norm. The following definition and Definition 1 in Section 3 are particular cases of the
corresponding definitions given in [2].

Definition 1 Let B be a C∗-algebra of the type I with identity. A Hopf C∗-algebra is
a triple (B,∆, ε), where ∆ : B −→ B ⊗ B and ε : B −→ C are homomorphisms called
coproduct and counit, respectively, such that the following diagrams are commutative:

B ⊗B B ⊗B ⊗B-
∆⊗ id

B B ⊗B-∆

?

∆
?

id⊗∆

B ⊗B B-
ε⊗ id

B ⊗B�
id⊗ ε

B

∆
�

�
�

�	 ?

id ∆
@

@
@

@R

(27)

It will be convenient to introduce an element z ∈ Aq by

z = xy∗. (28)

To define a comultiplication on the C∗-algebra St(Aq), we will need the following
lemmas.

Lemma 4 Let z be given by (28). The elements (z ⊗ y+ 1⊗ 1) and (z∗ ⊗ y∗ + 1⊗ 1) are
invertible in the C∗ algebra St(Aq)⊗ St(Aq).

Proof. By Corollary 2, ‖z‖ ≤ q and ‖y‖ ≤ 1. This implies that ‖z⊗ y‖ ≤ q < 1 and thus
the lemma is proved. 2

Lemma 5 The following relations hold:

zz∗ = q2yy∗, z∗z = q2y∗y, (29)

(x⊗ y + y ⊗ 1)(q−2z ⊗ y + 1⊗ 1) = (z ⊗ y + 1⊗ 1)(x∗−1 ⊗ y + y ⊗ 1),

(q−2z∗ ⊗ y∗ + 1⊗ 1)(x∗ ⊗ y∗ + y∗ ⊗ 1) = (x−1 ⊗ y∗ + y∗ ⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1),
(30)

(x⊗ y + y ⊗ 1)(y∗ ⊗ z∗ + x∗ ⊗ x∗) = (z ⊗ y + 1⊗ 1)(1⊗ z∗ + z∗ ⊗ x∗),

(y ⊗ z + x⊗ x)(x∗ ⊗ y∗ + y∗ ⊗ 1) = (1⊗ z + z ⊗ x)(z∗ ⊗ y∗ + 1⊗ 1),
(31)

(z ⊗ y + 1⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1)− (x⊗ y + y ⊗ 1)(x∗ ⊗ y∗ + y∗ ⊗ 1) =
(1− yy∗)⊗ (1− yy∗), (32)

(q−2z∗ ⊗ y∗ + 1⊗ 1)(q−2z ⊗ y + 1⊗ 1)− (x−1 ⊗ y∗ + y∗ ⊗ 1)(x∗−1 ⊗ y + y ⊗ 1) =
(1− y∗y)⊗ (1− y∗y), (33)

(x⊗ x+ y ⊗ z)(x∗ ⊗ x∗ + y∗ ⊗ z∗) + (1− q2)(x⊗ y + y ⊗ 1)(x∗ ⊗ y∗ + y∗ ⊗ 1) =
(z ⊗ y + 1⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1), (34)

(x⊗ x+ y ⊗ z)(x∗ ⊗ x∗ + y∗ ⊗ z∗) + (q−2 − 1)(z ⊗ x+ 1⊗ z)(z∗ ⊗ x∗ + 1⊗ z∗) =
(z ⊗ y + 1⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1), (35)

(x⊗ x+ y ⊗ z)(1⊗ z∗ + z∗ ⊗ x∗) = q2(x⊗ y + y ⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1). (36)
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Proof. Let us prove the first relation of (29). It follows from (3) that

y∗y = (q−2 − 1)−1(x−1x∗−1 − 1).

Whence, by using (28) and (2), we obtain

zz∗ = xy∗yx∗ = (q−2 − 1)−1x(x−1x∗−1 − 1)x∗ = q2(1− q2)−1(1− xx∗) = q2yy∗.

To prove the second relation of (29), rewrite (1) as y∗y = q−2(1 + (q−2 − 1)yy∗)−1yy∗.
Then use (3) to get

z∗z = yx∗xy∗ = y(1 + (q−2 − 1)y∗y)−1y∗ = (1 + (q−2 − 1)yy∗)−1yy∗ = q2y∗y.

Now we prove the first relation of (30). Consider the difference of the left- and right-
hand sides of the first relation of (30) multiplied on the right by the invertible element
(x∗ ⊗ 1) and use (28), (4), and (2).

(x⊗ y + y ⊗ 1)(q−2zx∗ ⊗ y + x∗ ⊗ 1)− (z ⊗ y + 1⊗ 1)(1⊗ y + yx∗ ⊗ 1) =
(x⊗ y + y ⊗ 1)(y∗ ⊗ y + x∗ ⊗ 1)− (z ⊗ y + 1⊗ 1)(1⊗ y + z∗ ⊗ 1) =
xx∗ ⊗ y + yy∗ ⊗ y − zz∗ ⊗ y − 1⊗ y =
(1− (1− q2)yy∗)⊗ y + yy∗ ⊗ y − q2yy∗ ⊗ y − 1⊗ y = 0.

The second relation of (30) is obtained by taking the conjugate of the first.
The first relation of (31) follows from that of (30) by multiplying both sides from the

right by the invertible element (x∗ ⊗ x∗) and using (28). The second relation is obtained
by conjugation.

Consider (32). By using (28), (29), and (2), we get

(z ⊗ y + 1⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1)− (x⊗ y + y ⊗ 1)(x∗ ⊗ y∗ + y∗ ⊗ 1) =
zz∗ ⊗ yy∗ + 1⊗ 1− xx∗ ⊗ yy∗ − yy∗ ⊗ 1 =
q2yy∗ ⊗ yy∗ + 1⊗ 1− (1− (1− q2)yy∗)⊗ yy∗ − yy∗ ⊗ 1 =
(1− yy∗)⊗ (1− yy∗).

To prove (33), first note that (4) and (28) imply that y∗x∗−1 = q−2z and x−1y = q−2z∗.
Use (29) and (3) to find

(q−2z∗ ⊗ y∗ + 1⊗ 1)(q−2z ⊗ y + 1⊗ 1)− (x−1 ⊗ y∗ + y∗ ⊗ 1)×
(x∗−1 ⊗ y + y ⊗ 1) = q−4z∗z ⊗ y∗y + 1⊗ 1− x−1x∗−1 ⊗ y∗y − y∗y ⊗ 1 =
q−2y∗y ⊗ y∗ + 1⊗ 1− (1 + (q−2 − 1)y∗y)⊗ y∗y − y∗y ⊗ 1 =
(1− y∗y)⊗ (1− y∗y).

To see that (34) holds, we use relations (2), (4), and (28) to simplify the left-hand side.
We get

(z ⊗ x+ y ⊗ z)(x∗ ⊗ x∗ + y∗ ⊗ z∗) + (1− q2)(x⊗ y + y ⊗ 1)(x∗ ⊗ y∗ + y∗ ⊗ 1) =
xx∗ ⊗ xx∗ + xy∗ ⊗ xz∗ + yx∗ ⊗ zx∗ + yy∗ ⊗ zz∗ +
(1− q2)(xx∗ ⊗ yy∗ + xy∗ ⊗ y + yx∗ ⊗ y∗ + yy∗ ⊗ 1) =
(1− (1− q2)yy∗)⊗ (1− (1− q2)yy∗) + q2z ⊗ y + q2z∗ ⊗ y∗ + q2yy∗ ⊗ yy∗ +
(1− q2)((1− (1− q2)yy∗)⊗ yy∗ + z ⊗ y + z∗ ⊗ y∗ + yy∗ ⊗ 1) =
1⊗ 1 + z ⊗ y + z∗ ⊗ y∗ + q2yy∗ ⊗ yy∗ =
(z ⊗ y + 1⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1).
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Now we will prove relation (35). We have

(x⊗ x+ y ⊗ z)(x∗ ⊗ x∗ + y∗ ⊗ z∗) + (q−2 − 1)(z ⊗ x+ 1⊗ z)(z∗ ⊗ x∗ + 1⊗ z∗) =
(xx∗ + (1− q2)yy∗)⊗ xx∗ + q−2xy∗ ⊗ xz∗ + q−2yx∗ ⊗ zx∗ + (yy∗ + (q−2 − 1)1)⊗
zz∗ = 1⊗ (1− (1− q2)yy∗) + z ⊗ y + z∗ ⊗ y∗ + q2yy∗ ⊗ yy∗ + (1− q2)1⊗ yy∗ =
1⊗ 1 + z ⊗ y + z∗ ⊗ y∗ + zz∗ ⊗ yy∗ =
(z ⊗ y + 1⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1).

To see that (36) holds, we use (4) and (2) to get for the right-hand side

(x⊗ x+ y ⊗ z)(1⊗ z∗ + z∗ ⊗ x∗) = x⊗ xz∗ + xz∗ ⊗ xx∗+
y ⊗ zz∗ + yz∗ ⊗ zx∗ = q2(x⊗ y + y ⊗ xx∗ + y ⊗ yy∗ +
yz∗ ⊗ y∗) = q2(x⊗ y + y ⊗ 1 + q2y ⊗ yy∗ + yz∗ ⊗ y∗).

On the other hand, q2(x⊗y+y⊗1)(z∗⊗y∗+1⊗1) = q2(q2y⊗yy∗+x⊗y+yz∗⊗y∗+y⊗1),
whence (36) follows. 2

Lemma 6 The elements

(y∗ ⊗ z∗ + x∗ ⊗ x∗), (y ⊗ z + x⊗ x), (q−2z ⊗ y + 1⊗ 1), (q−2z∗ ⊗ y∗ + 1⊗ 1) (37)

are invertible in the C∗-algebra St(Aq)⊗ St(Aq).

Proof. Let πi : Aq −→ L(Hi), i = 1, 2, be ∗-representations of the algebra Aq on the
Hilbert spaces H1 and H2. Denote by Xi, Yi, Zi the operators πi(x), πi(y), and πi(z),
respectively. We first show that the operator Q = (Y ∗

1 ⊗ Z∗2 + X∗
1 ⊗ X∗

2 ) is invertible.
Suppose the converse. Then there is a sequence of vectors vn ∈ H1 ⊗ H2, n ∈ Z+ such
that ‖vn‖ = 1 for all n and lim

n−→∞
‖Q(vn)‖ = 0. Because, by Lemma 4, the operator

(X1 ⊗ Y2 + I ⊗ I) is invertible, it follows from (31) that

lim
n−→∞

‖(I ⊗ Z∗2 + Z∗1 ⊗X∗
2 )(vn)‖ = 0.

But then, from relation (35), it follows that

lim
n−→∞

‖(Z1 ⊗ Y2 + I ⊗ I)(Z∗1 ⊗ Y ∗
2 + I ⊗ I)(vn)‖ = 0.

But this is a contradiction to Lemma 4.
It follows from (4) that (q−2z ⊗ y + 1 ⊗ 1)(x∗ ⊗ x∗) = (y∗ ⊗ z∗ + x∗ ⊗ x∗) and, since

the element (x∗ ⊗ x∗) is invertible, the third element in (37) is invertible.
The other two elements are adjoint to the first and the third. 2

Now we are in position to define a Hopf ∗-algebra structure on St(Aq). Let the comul-
tiplication ∆, counit ε be defined on the generators of the algebra Aq as follows

∆(x) = (z ⊗ y + 1⊗ 1)−1(x⊗ x+ y ⊗ z),

∆(x∗) = (x∗ ⊗ x∗ + y∗ ⊗ z∗)(z∗ ⊗ y∗ + 1⊗ 1)−1

∆(y) = (z ⊗ y + 1⊗ 1)−1(x⊗ y + y ⊗ 1),

∆(y∗) = (x∗ ⊗ y∗ + y∗ ⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1)−1,

(38)

ε(x) = 1, ε(x∗) = 1, ε(y) = 0, ε(y∗) = 0. (39)
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It follows from Lemmas 6 and 5 that

∆(y) = (x∗−1 ⊗ y + y ⊗ 1)(q−2z ⊗ y + 1⊗ 1)−1 =
(z∗ ⊗ x∗ + 1⊗ z∗)(x∗ ⊗ x∗ + y∗ ⊗ z∗)−1, (40)

∆(y∗) = (q−2z∗ ⊗ y∗ + 1⊗ 1)−1(x−1 ⊗ y∗ + y∗ ⊗ 1) =
(x⊗ x+ y ⊗ z)−1(z ⊗ x+ 1⊗ z). (41)

The following lemma will be used to prove that ∆ can be extended to a well defined
homomorphism.

Lemma 7 (cf. [4]) Let π : Aq −→ L(H) be a ∗-representation of the algebra Aq. Denote
by Y the operator π(y). Then Ran(1−Y ∗Y ) = Ran(1−Y Y ∗). Let Ran(I −Y Y ∗) = H◦.
Then H◦ is invariant with respect to Aq.

Proof. Rewriting (1) as

(1− Y Y ∗) = (1− Y ∗Y )(1− (1− q2)Y ∗Y )−1,

we see that Ran(1− Y ∗Y ) = Ran(1− Y Y ∗). Because

Y (1− Y ∗Y ) = (1− Y Y ∗)Y and Y ∗(1− Y Y ∗) = (1− Y ∗Y )Y ∗,

we see that H◦ is invariant with respect to Y and Y ∗.
To see that H◦ is invariant with respect to X, we use relations (3) and (2) to get

X(1− Y Y ∗) = (q−2 − 1)−1X(q−2 − (X∗X)−1) =
(q−2 − 1)−1(q−2XX∗ − 1)X∗−1 =
(q−2 − 1)−1(q−2(1− (1− q2)Y Y ∗)− 1)X∗−1 =
(1− Y Y ∗)X∗−1.

Similarly, applying (2) and (3), we get

X∗(1− Y Y ∗) = X∗(1− (1− q2)−1(1−XX∗) =
(1− q2)−1X∗(XX∗ − q2) =
(1− q2)−1(1− q2(X∗X)−1)X∗XX∗ =
(1− q2)−1(1− q2(1 + (q−2 − 1)Y ∗Y ))X∗XX∗ =
(1− Y ∗Y )X∗XX∗,

which proves the invariance of H◦ with respect to X∗.
Because H◦ is invariant with respect to all the generators of the algebra Aq, it is

invariant with respect to Aq. 2

Lemma 8 Let ∆, ε be defined on the generators of the algebra Aq as in (38), (39),
correspondingly. Then these mappings can be extended to well defined ∗-homomorphisms
on the C∗-algebra St(Aq).
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Proof. It is immediate that ε is well defined.
We will prove that ∆ is well defined on Aq, i.e. the elements ∆(x), ∆(y) satisfy relations

(1) – (4). To show that, let πi : Aq −→ L(Hi), i = 1, 2, be ∗-representations of the algebra
Aq and denote by Xi, Yi, Zi the operators πi(x), πi(y), πi(z) on the corresponding spaces.
By Lemma 1, each Hi admits, in particular, the decomposition Hi = H′′

i ⊕H′′
i
⊥, i = 1, 2,

where H′′
i is the kernel of the operator (1− YiY

∗
i ), H′′

i
⊥ is the orthogonal complement to

H′′
i , and each subspace is invariant with respect to St(Aq). This decomposition induces

the following decomposition of the representation space H1 ⊗H2:

H1 ⊗H2 = K + L,

where K = H′′
1⊗H2 +H1⊗H′′

2 and L = H′′
1
⊥⊗H′′

2
⊥. We will prove that relation (1) holds

on each of the spaces K and L.
Consider restrictions of the operators to K. It follows from (32) that

(Z1 ⊗ Y2 + 1⊗ 1)(Z∗1 ⊗ Y ∗
2 + 1⊗ 1) = (X1 ⊗ Y2 + Y1 ⊗ 1)(X∗

1 ⊗ Y ∗
2 + Y ∗

1 ⊗ 1). (42)

Hence, by using (38), we see that

(π1 ⊗ π2)∆(yy∗) = (Z1 ⊗ Y2 + I ⊗ I)−1(X1 ⊗ Y2 + Y1 ⊗ I)×
(X∗

1 ⊗ Y ∗
2 + Y ∗

1 ⊗ I)(Z∗1 ⊗ Y ∗
2 + I ⊗ I)−1 = I ⊗ I

and

(π1 ⊗ π2)∆(y∗y) = (X∗
1 ⊗ Y ∗

2 + Y ∗
1 ⊗ I)(Z∗1 ⊗ Y ∗

2 + I ⊗ I)−1×
(Z1 ⊗ Y2 + I ⊗ I)−1(X1 ⊗ Y2 + Y1 ⊗ I) = I ⊗ I

on K. On the other hand, relations (34) and (42) imply that

(X1 ⊗X2 + Y1 ⊗Z2)(X1 ⊗X∗
2 + Y ∗

1 ⊗Z∗2 ) = q2(Z1 ⊗ Y2 + I ⊗ I)(Z∗1 ⊗ Y ∗
2 + I ⊗ I), (43)

which means that

(π1 ⊗ π2)∆(x∗x) = (X∗
1 ⊗X2 + Y ∗

1 ⊗ Z∗2 )(Z∗1 ⊗ Y ∗
2 + I ⊗ I)−1×

(Z1 ⊗ Y2 + I ⊗ I)−1(X1 ⊗X2 + Y1 ⊗ Z2) = q2I ⊗ I.

Whence we see that relations (1) and (3) hold on K.
Now we will prove that these relations hold on a dense subspace of L, namely on

L◦ = Ran(I − Y1Y
∗
1 )⊗Ran(I − Y2Y

∗
2 ).

Consider relation (1) and rewrite it as

(1− yy∗)−1 − q2(1− y∗y)−1 = 1− q2. (44)

We will show that the operators (π1 ⊗ π2)∆(yy∗) and (π1 ⊗ π2)∆(y∗y) satisfy (44) on L◦.
Indeed, by using relation (32)

(π1 ⊗ π2)∆(1− yy∗) = I ⊗ I − (Z1 ⊗ Y2 + I ⊗ I)−1(X1 ⊗ Y2 + Y1 ⊗ I)×
(X∗

1 ⊗ Y ∗
2 + Y ∗

1 ⊗ I)(Z∗1 ⊗ Y ∗
2 + I ⊗ I)−1 =

(Z1 ⊗ Y2 + I ⊗ I)−1((Z1 ⊗ Y2 + I ⊗ I)(Z∗1 ⊗ Y ∗
2 + I ⊗ I)−

(X1 ⊗ Y2 + Y1 ⊗ I)(X∗
1 ⊗ Y ∗

2 + Y ∗
1 ⊗ I))(Z∗1 ⊗ Y ∗

2 + I ⊗ I)−1 =
(Z1 ⊗ Y2 + I ⊗ I)−1((I − Y1Y

∗
1 )⊗ (I − Y2Y

∗
2 ))(Z∗1 ⊗ Y ∗

2 + I ⊗ I)−1.
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Whence,

((π2⊗π2)∆(1−yy∗))−1 = (Z∗1⊗Y ∗
2 +I⊗I)((I−Y1Y

∗
1 )−1⊗(I−Y2Y

∗
2 )−1)(Z1⊗Y2 +I⊗I).

(45)
Now we use (40) and (41), and then (33) to get

(π1 ⊗ π2)∆(1− y∗y) = I ⊗ I − (X∗
1 ⊗ Y ∗

2 + Y ∗
1 ⊗ I)(Z∗1 ⊗ Y ∗

2 + I ⊗ I)−1×
(Z1 ⊗ Y2 + I ⊗ I)−1(X1 ⊗ Y2 + Y1 ⊗ I) =
I ⊗ I − (q−2Z∗1 ⊗ Y ∗

2 + I ⊗ I)−1(X−1
1 ⊗ Y ∗

2 + Y ∗
1 ⊗ I)×

(X∗
1
−1 ⊗ Y2 + Y1 ⊗ I)(q−2Z1 ⊗ Y2 + I ⊗ I)−1 =

(q−2Z∗1 ⊗ Y ∗
2 + I ⊗ I)−1((q−2Z∗1 ⊗ Y ∗

2 + I ⊗ I)(q−2Z1 ⊗ Y2 + I ⊗ I)−
(X−1

1 ⊗ Y ∗
2 + Y ∗

1 ⊗ I)(X∗
1
−1 ⊗ Y2 + Y1 ⊗ I))(q−2Z1 ⊗ Y2 + I ⊗ I)−1 =

(q−2Z∗1 ⊗ Y ∗
2 + I ⊗ I)−1((I − Y ∗

1 Y1)⊗ (I − Y ∗
2 Y2))(q−2Z1 ⊗ Y2 + I ⊗ I)−1.

And so,
((π2 ⊗ π2)∆(1− y∗y))−1 =

(q−2Z1 ⊗ Y2 + I ⊗ I)((I − Y ∗
1 Y1)−1 ⊗ (I − Y ∗

2 Y2)−1)(q−2Z∗1 ⊗ Y ∗
2 + I ⊗ I). (46)

Note, that (29) implies that zy∗y = yy∗z and z∗yy∗ = y∗yz∗. We use (29) and (44) to get
from (45) and (46) that

((π1 ⊗ π2)∆(1− yy∗))−1 − q2((π1 ⊗ π2)∆(1− y∗y))−1 =
(Z∗1 ⊗ Y ∗

2 + I ⊗ I)((I − Y1Y
∗
1 )−1 ⊗ (I − Y2Y

∗
2 )−1)(Z1 ⊗ Y2 + I ⊗ I)−

q2(q−2Z1 ⊗ Y2 + I ⊗ I)((I − Y ∗
1 Y1)−1 ⊗ (I − Y ∗

2 Y2)−1)(q−2Z∗1 ⊗ Y ∗
2 + I ⊗ I) =

((I − Y ∗
1 Y1)−1 ⊗ (I − Y ∗

2 Y2)−1)(Z∗1Z1 ⊗ Y ∗
2 Y2) + (I − Y1Y

∗
1 )−1 ⊗ (I − Y2Y

∗
2 )−1 −

q−2((I − Y1Y
∗
1 )−1 ⊗ (I − Y2Y

∗
2 )−1)(Z1Z

∗
1 ⊗ Y2Y

∗
2 )− q2(I − Y1Y

∗
1 )−1 ⊗

(I − Y ∗
2 Y2)−1 = q2(−I + (1− Y ∗

1 Y1)−1)⊗ (−I + (I − Y ∗
2 Y2)−1)−

q2(I − Y ∗
1 Y1)−1 ⊗ (I − (I − Y ∗

2 Y2)−1) + (I − Y1Y
∗
1 )⊗ (I − Y2Y

∗
2 )−1 −

(−I + (I − Y1Y
∗
1 )−1)⊗ (−I + (I + Y2Y

∗
2 )−1) =

((I − Y1Y
∗
1 )−1 − q2(I − Y ∗

1 Y1)−1)⊗ I + I ⊗ ((I − Y2Y
∗
2 )−1 − q2(I − Y ∗

2 Y2)−1)−
(1− q2)I ⊗ I = (1− q2)I ⊗ I.

To prove that ∆(x∗x) and ∆(y∗y) satisfy relation (2), we use (40), (41), and (35) to
get

∆(1 + (q−2 − 1)y∗y) = 1⊗ 1+
(q−2 − 1)(x∗ ⊗ y∗ + y∗ ⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1)−1(z ⊗ y + 1⊗ 1)(x⊗ y + y ⊗ 1) =
1⊗ 1 + (q−2 − 1)(x⊗ x+ y ⊗ z)−1(z ⊗ x+ 1⊗ z)×
(z∗ ⊗ x∗ + 1⊗ z∗)(x∗ ⊗ x∗ + y∗ ⊗ z∗)−1 =
(x⊗ x+ y ⊗ z)−1[(x⊗ x+ y ⊗ z)(x∗ ⊗ x∗ + y∗ ⊗ z∗) +
(q−2 − 1)(z ⊗ x+ 1⊗ z)(z∗ ⊗ x∗ ⊗ 1⊗ z∗)](x∗ ⊗ x∗ + y∗ ⊗ z∗)−1 =
(x⊗ x+ y ⊗ z)−1(z ⊗ y + 1⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1)(x∗ ⊗ x∗ + y∗ ⊗ z∗)−1 =
(∆(x∗x))−1.
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It is easy to see that ∆(xx∗) and ∆(yy∗) satisfy (3). Indeed, because

∆(xx∗) = (z ⊗ y + 1⊗ 1)−1(x⊗ x+ y ⊗ z)(x∗ ⊗ x∗ + y∗ ⊗ z∗)(z∗ ⊗ y∗ + 1⊗ 1)−1,

∆(yy∗) = (z ⊗ y + 1⊗ 1)−1(x⊗ y + y ⊗ 1)(x∗ ⊗ y∗ + y∗ ⊗ 1)(z∗ ⊗ y∗ + 1⊗ 1)−1,

it immediately follows from (34) that (3) holds.
Now consider relation (4). It readily follows from the first relation of (31) that

(z ⊗ y + 1⊗ 1)−1(x⊗ y + y ⊗ 1)(x∗ ⊗ x∗ + y∗ ⊗ z∗) = (1⊗ z∗ + z∗ ⊗ x∗).

By using this relation together with (36), we get

∆(xyx∗) = (z ⊗ y + 1⊗ 1)−1(x⊗ x+ y ⊗ z)(z ⊗ y + 1⊗ 1)−1×
(x⊗ y + y ⊗ 1)(x∗ ⊗ x∗ + y∗ ⊗ z∗)(z∗ ⊗ y∗ + 1⊗ 1)−1 =
(z ⊗ y + 1⊗ 1)−1(x⊗ x+ y ⊗ z)(1⊗ z∗ + z∗ ⊗ x∗)(z∗ ⊗ y∗ + 1⊗ 1)−1 =
q2(z ⊗ y + 1⊗ 1)−1(x⊗ y + y ⊗ 1) = q2∆(y).

Because Aq is dense in St(Aq), we extend ∆ to St(Aq) by continuity. 2

We can now prove the main theorem.

Theorem 4 The mappings ∆ and ε define a Hopf C∗-algebra structure on St(Aq).

Proof. By using Lemma 8, it is sufficient that the diagrams in (27) be commutative on
the generators of the algebra Aq.

We first prove commutativity of the first diagram.
By using (38), we have that

(id⊗∆) ◦∆(y) = (id⊗∆)((z ⊗ y + 1⊗ 1)−1(x⊗ y + y ⊗ 1)) ={
z ⊗ ((zy + 1⊗ 1)−1(x⊗ y + y ⊗ 1)) + 1⊗ 1⊗ 1

}−1

×{
x⊗ ((z ⊗ y + 1⊗ 1)−1(x⊗ y + y ⊗ 1)) + y ⊗ 1⊗ 1

}
=

{z ⊗ x⊗ y + z ⊗ y ⊗ 1 + 1⊗ z ⊗ y + 1⊗ 1⊗ 1}−1 ×
{x⊗ x⊗ y + x⊗ y ⊗ 1 + y ⊗ z ⊗ y + y ⊗ 1⊗ 1}.

On the other hand,

(∆⊗ id) ◦∆(y) = (∆⊗ id)((z ⊗ y + 1⊗ 1)−1(x⊗ y + y ⊗ 1)) =
{((z ⊗ y + 1⊗ 1)−1(z ⊗ x+ 1⊗ z))⊗ y + 1⊗ 1⊗ 1}−1 ×
{((z ⊗ y + 1⊗ 1)−1(x⊗ x+ y ⊗ z))⊗ y + ((z ⊗ y + 1⊗ 1)−1(x⊗ y + y ⊗ 1))⊗ 1} =
{z ⊗ x⊗ y + z ⊗ y ⊗ 1 + 1⊗ z ⊗ y + 1⊗ 1⊗ 1}−1 ×
{x⊗ x⊗ y + x⊗ y ⊗ 1 + y ⊗ z ⊗ y + y ⊗ 1⊗ 1}.

Similar calculations can be performed to show that

(id⊗∆) ◦∆(x) = (∆⊗ id) ◦∆(x) =
(z ⊗ x⊗ y + z ⊗ y ⊗ 1 + 1⊗ z ⊗ y + 1⊗ 1⊗ 1)−1 ×
(x⊗ x⊗ x+ x⊗ y ⊗ z + y ⊗ z ⊗ x+ y ⊗ 1⊗ z).
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Because ∆ ◦ ∗ = (∗ ⊗ ∗) ◦∆, we see that the first diagram of (27) is also commutative for
the elements x∗ and y∗.

Commutativity of the second diagram follows immediately from the definition of ε,
(39), and (38). 2

Remark. The definition of a Hopf algebra as well as a Hopf ∗-algebra H ([1, 10]) also
includes an antipode S which is an antihomomorphism S : H −→ H satisfying the following
relation

µ ◦ (S ⊗ id) ◦∆ = µ ◦ (id⊗ S) ◦∆ = ς ◦ ε, (47)

where µ : H⊗H −→ H is the multiplication, µ(h1⊗h2) = h1h2 for h1, h2 ∈ H, ς : C −→ H
is the imbedding ς(c) = c1, c ∈ C.

In our case, it is also possible to define an antipode on the algebra Aq by defining it
on the generators to be

S(x) = x∗, S(x∗) = x, S(y) = −q−2z∗, S(y∗) = −z.

It is easy to prove that S can be extended on the whole Aq to a well-defined antihomomor-
phism. If πi : St(Aq) −→ L(Hi) are ∗-representations of the C∗-algebra St(Aq), then the
operators (π1⊗π2)(id⊗S)◦∆(a) and (π1⊗π2)(S⊗ id)◦∆(a), where a is one of the gener-
ators x, x∗, y, or y∗, although unbounded, are defined on Ran(I − Y Y ∗)⊗Ran(I − Y Y ∗)
and relation (47) holds on this subspace invariant with respect to Aq ⊗alg Aq.

3 Comodule structure on the two-parameter deformation

of the unit disc

For 0 < q ≤ 1 and 0 ≤ µ < 1, (q, µ) 6= (1, 0), we denote by St(Cµ,q) the universal
enveloping C∗-algebra of the unital ∗-algebra over C, Cµ,q, generated by two elements w,
w∗ that satisfy the following relation

q−1(1− w∗w)− q(1− ww∗) = µ(1− ww∗)(1− w∗w), (48)

and call it a two-parameter quantum deformation of the unit disc. This C∗-algebra was
studied in [5]. In particular, it was shown that St(Cµ,q) is a C∗-algebra of type I, ‖w‖ ≤ 1,
and the quantized universal enveloping algebra Uq(sl(2)) acts on St(Cµ,q).

The purpose of this section is to show that there is a coaction of St(Aq) on the two-
parameter quantum deformation of the unit disc.

Definition 1 A left coaction of a type I unital Hopf C∗-algebra (B,∆, ε) on a type I unital
C∗-algebra D is a ∗-homomorphism δ : D −→ B ⊗D such that the following diagrams are
commutative:

B ⊗D B ⊗B ⊗D-
∆⊗ id

D B ⊗D-δ

?

δ

?

id⊗ δ

B ⊗D D-
ε⊗ id

δ
�

�
�

�	

D

?

id (49)
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To define a coaction on St(Cµ,q), we will need some auxiliary results.

Lemma 9 Let w, w∗ be the generators of Cµ,q and z be given by (28). The elements of
the C∗-algebra St(Aq)⊗ St(Cµ,q),

(z ⊗ w + 1⊗ 1), (z∗ ⊗ w∗ + 1⊗ 1),

are invertible.

Proof. Since ‖w‖ ≤ 1 and ‖z‖ ≤ q, ‖z ⊗ w‖ ≤ q < 1. 2

Lemma 10 The following relations hold in the C∗-algebra St(Aq)⊗ St(Cµ,q):

(x⊗ w + y ⊗ 1)(q−2z ⊗ w + 1⊗ 1) = (z ⊗ w + 1⊗ 1)(x∗−1 ⊗ w + y ⊗ 1), (50)
(q−2z∗ ⊗ w∗ + 1⊗ 1)(x∗ ⊗ w∗ + y∗ ⊗ 1) = (x−1 ⊗ w∗ + y∗ ⊗ 1)(z∗ ⊗ w∗ + 1⊗ 1), (51)

(z ⊗ w + 1⊗ 1)(z∗ ⊗ w∗ + 1⊗ 1)− (x⊗ w + y ⊗ 1)(x∗ × w∗ + y∗ ⊗ 1) =
(1− yy∗)⊗ (1− ww∗), (52)

(q−2z∗ ⊗ w∗ + 1⊗ 1)(q−2z ⊗ w + 1⊗ 1)− (x−1 ⊗ w∗ + y∗ ⊗ 1)(x∗−1 ⊗ w + y ⊗ 1) =
(1− y∗y)⊗ (1− w∗w). (53)

Proof. One can prove all these identities in the way similar to the proof of Lemma 5. 2

Lemma 11 Let w, w∗ be the generators of Cµ,q and z be given by (28). The elements of
the C∗-algebra St(Aq)⊗ St(Cµ,q),

(q−2z ⊗ w + 1⊗ 1), (q−2z∗ ⊗ w∗ + 1⊗ 1),

are invertible.

Proof. Let π1 : St(Aq) −→ L(H1) and π2 : St(Cµ,q) −→ L(H2) be ∗-representations,
and X = π1(x), Y = π1(y), Z = π1(z), and W = π2(w). Suppose that the element
(q−2Z ⊗W + I ⊗ I) is not invertible, i.e. there is a sequence of vectors vn ∈ H1 ⊗ H2,
‖vn‖ = 1, such that

lim
n−→∞

‖(q−2Z ⊗W + I ⊗ I)(vn)‖ = 0,

lim
n−→∞

‖(q−2Z∗ ⊗W ∗ + I ⊗ I)(vn)‖ = 0.
(54)

From the estimates

‖(q−4ZZ∗ ⊗WW ∗ − I ⊗ I)(vn)‖ =
‖q−4ZZ∗ ⊗WW ∗ + q−2Z ⊗W − q−2z ⊗W − I ⊗ I)(vn)‖ ≤
q−2‖(Z ⊗W )‖‖(q−2Z∗ ⊗W ∗ + I ⊗ I)(vn)‖+ ‖(q−2Z ⊗W + I ⊗ I)(vn)‖

and (54) it follows that

lim
n−→∞

‖(q−4ZZ∗ ⊗WW ∗ − I ⊗ I)(vn)‖ = 0. (55)
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A similar estimate leads to

lim
n−→∞

‖(q−4Z∗Z ⊗W ∗W − I ⊗ I)(vn)‖ = 0. (56)

By using (50) and Lemma 9, we see that (54) implies that

lim
n−→∞

‖(X∗−1 ⊗W + Y ⊗ I)(vn)‖ = 0. (57)

Because q−2Z = Y ∗X∗−1, we also have

‖(Y ∗Y ⊗ I − I ⊗ I)(vn)‖ =
‖(Y ∗ ⊗ I + Y ∗X∗−1 ⊗W − q−2Z ⊗W − I ⊗ I)(vn)‖ ≤
‖Y ∗Y ⊗ I‖‖(X∗−1 ⊗W + Y ⊗ I)(vn)‖+ ‖(q−2Z ⊗W + I ⊗ I)(vn)‖.

This estimate, together with (57) and (54), implies that

lim
n−→∞

‖(Y ∗Y ⊗ I − I ⊗ I)(vn)‖ = 0. (58)

This equality, together with (1), implies that

lim
n−→∞

‖(Y Y ∗ ⊗ I − I ⊗ I)(vn)‖ = 0. (59)

Recalling that ZZ∗ = q2Y Y ∗ and Z∗Z = q2Y ∗Y and using (55) and (56), we see that

lim
n−→∞

‖(I ⊗WW ∗ − q2I ⊗ I)(vn)‖ = 0,

lim
n−→∞

‖(I ⊗W ∗W − q2I ⊗ I)(vn)‖ = 0.
(60)

But now (60) implies that

lim
n−→∞

‖q−1I ⊗ (I −W ∗W )(vn)− qI ⊗ (I −WW ∗)(vn)‖ = q−1(1− q2)2 (61)

whereas
lim

n−→∞
µ(I ⊗ (I −WW ∗)(I −W ∗W ))(vn)‖ = µ(1− q2)2. (62)

Relations (61) and (62) lead to a contradiction because, by (48), µ(1−q2)2 = q−1(1−q2)2,
which is impossible since µ < 1 and q ≤ 1. 2

Let us now define a left coaction of the C∗-algebra St(Aq) on the C∗-algebra St(Cµ,q).
We set δ on the generators of Cµ,q to be

δ(w) = (z ⊗ w + 1⊗ 1)−1(x⊗ w + y ⊗ 1),

δ(w∗) = (x∗ ⊗ w∗ + y∗ ⊗ 1)(z∗ ⊗ w∗ + 1⊗ 1)−1.
(63)

By using (50) and (51), we can rewrite these expressions as

δ(w) = (x∗−1 ⊗ w + y ⊗ 1)(q−2z ⊗ w + 1⊗ 1)−1,

δ(w∗) = (q−2z∗ ⊗ w∗ + 1⊗ 1)−1(x−1 ⊗ w∗ + y∗ ⊗ 1).
(64)

Because of Lemmas 9 and 11, these definitions make sense.
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Lemma 12 Let δ be defined on the generators of the algebra Cµ,q as in (63). Then this
mapping can be extended to a well defined ∗-homomorphism on the C∗-algebra St(Cµ,q).

Proof. Let π1 : St(Aq) −→ L(H1) and π2 : Cµ,q −→ L(H2) be ∗-representations. Denote
X = π1(x), Y = π1(y), Z = π1(z), and W = π2(w). It can be shown ([4]) that Ker(I −
WW ∗) = Ker(I−W ∗W ) and Ran(I−WW ∗) = Ran(I−W ∗W ), moreover these subspaces
are invariant with respect to St(Cµ,q) and Cq,µ, correspondingly. As in the proof of Lemma
8, we set H′′

1 = Ker(I − Y Y ∗), H′′
2 = Ker(I − WW ∗), and let H′′

i
⊥, i = 1, 2, be the

orthogonal complement to the space H′′
i . If K = H′′

1 ⊗ H2 + H1 ⊗ H′′
2 , then, by using

identities (52) and (53), we can show in the same way as in the proof of Lemma 8 that
(48) holds on K. We will show that (48) holds on L = H′′

1
⊥ ⊗H′′

2
⊥. To do that, we again

consider relation (48) in the form

q−1(1− ww∗)−1 − q(1− w∗w)−1 = µ (65)

and prove that it holds on the dense subspace of L, L◦ = Ran(I−Y ∗Y )⊗Ran(I−W ∗W ),
for the operators (π1 ⊗ π2)δ(ww∗) and (π1 ⊗ π2)δ(w∗w).

By using relations (52) and (53), as in the proof of Lemma 8, we obtain

((π1 ⊗ π2)δ(1− ww∗))−1 =
(Z∗ ⊗W ∗ + I ⊗ I)((I − Y Y ∗)−1 ⊗ (I −WW ∗)−1)(Z ⊗W + I ⊗ I),

((π1 ⊗ π2)δ(1− w∗w))−1 =
(q−2Z ⊗W + I ⊗ I)((I − Y ∗Y )−1 ⊗ (I −W ∗W )−1)(q−2Z∗ ⊗W ∗ + I ⊗ I).

But then

q−1((π1 ⊗ π2)δ(1− ww∗))−1 − q((π1 ⊗ π2)δ(1− w∗w))−1 =
q−1(Z∗ ⊗W ∗ + I ⊗ I)((I − Y Y ∗)−1 ⊗ (I −WW ∗)−1)(Z ⊗W + I ⊗ I)−
q(q−2Z ⊗W + I ⊗ I)((I − Y ∗Y )−1 ⊗ (I −W ∗W )−1)(q−2Z∗ ⊗W ∗ + I ⊗ I) =
q−1{((I − Y ∗Y )−1 ⊗ (I −W ∗W )−1)(Z∗Z ⊗W ∗W + Z∗ ⊗W ∗) +
((I − Y Y ∗)−1 ⊗ (I −WW ∗)−1)(Z ⊗W + I ⊗ I)} −
q{((I − Y Y ∗)−1 ⊗ (I −WW ∗)−1)(q−4ZZ∗ ⊗WW ∗ + q−2Z ⊗W ) +
((I − Y ∗Y )−1 ⊗ (I −W ∗W )−1)(q−2Z∗ ⊗W ∗ + I ⊗ I)} =
q((I − Y ∗Y )−1 ⊗ (I −W ∗W )−1)(Y ∗Y ⊗W ∗W − I ⊗ I) +
q−1((I − Y Y ∗)−1 ⊗ (I −WW ∗)−1)(I ⊗ I − Y Y ∗ ⊗WW ∗) =
−q((I − Y ∗Y )−1 ⊗ (I −W ∗W )−1)(Y ∗Y ⊗ (I −W ∗W ) + (I − Y ∗Y )⊗ I) +
q−1((I − Y Y ∗)−1 ⊗ (I −WW ∗)−1)(Y Y ∗ ⊗ (I −WW ∗) + (I − Y Y ∗)⊗ I) =
−q{(I − Y ∗Y )−1 ⊗ I − I ⊗ I + I ⊗ (I −W ∗W )−1}+
q−1{(I − Y Y ∗)−1 ⊗ I + I ⊗ I + I ⊗ (I −WW ∗)−1} =
(q−1 − q)I ⊗ I + (q−1 − q)I ⊗ I + µI ⊗ I = µI ⊗ I.

This shows that the mapping δ can be extended to a well defined ∗-homomorphism on
Cµ,q. Now we can extend it by continuity to the whole St(Cµ,q). 2

One can prove the following theorem in the same way as we proved Theorem 4.
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Theorem 5 The mapping δ defines a left comodule structure on St(Cµ,q) over the Hopf
C∗-algebra St(Aq).

I would like to express my gratitude to Yu.S. Samoilenko and L.I. Vainerman for
support and many useful discussions.
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