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Abstract

The finite-dimensional invariant subspaces of the solutions of intergrable by Lax
infinite-dimensional Benney-Kaup dynamical system are presented. These invariant
subspaces carry the canonical symplectic structure, with relation to which the Neu-
mann type dynamical systems are Hamiltonian and Liouville intergrable ones. For
the Neumann-Bogolyubov and Neumann-Rosochatius dynamical systems, the Lax-
type representations via the dual moment maps into some deformed loop algebras as
well as the finite hierarchies of conservation laws are constructed.

1 Introduction

The Neumann-type dynamical systems consist of harmonic oscillators with some external
forcing, constrained to move on a unit sphere in the configuration space. This paper is con-
cerned with finite-dimensional invariant subspaces of solutions to some infinite-dimensional
Lax-type integrable dynamical system called the Benney-Kaup one. The finite-dimensional
invariant subspace carries the canonical symplectic structure, with relation to which the
Neumann-type dynamical systems are Hamiltonian and Liouville integrable ones.

The principle purpose of the present work is to provide a systematic procedure for
the Neumann-type dynamical systems to be treated basing on flows in loop algebras, the
Novikov-Lax reduction approach and the use of moment maps. The latter was recently
systematically developed in [1, 2], the Novikov-Lax reduction was devised in [3, 4] and
further thoroughly augmented in [5] for the case of nonlocal Lagrangian submanifolds,
generated by the spectrum of an associated Lax-type operator. As a finite result, we get a
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possibility to present a Lax-type representation for the Neumann-type dynamical systems
including the important Neumann-Bogolyubov-Rosochatius system [6] in the form firstly
found by J.Moser [7] but including the spectral parameter lying on the circle S1.

2 The Lie-algebraic setting of the Benney-Kaup

dynamical systems

Within the Lie-algebraic approach [11], a large class of integrable systems on an infinite-
dimensional functional manifold M can be derived by constructing a moment map into the
dual space of some loop algebras. Let G̃ denote the semi-infinite formal loop Lie algebra
over a semisimple algebra G, i.e., an element a(λ) ∈ G̃, if

a(λ) =
∑

j<<∞
ujλ

j , uj ∈ G (1)

for all j <<∞, where λ ∈ C is a parameter. We use the vector space direct sum splitting

G̃ = G̃+ ⊕ G̃− (2)

where G̃+ denotes the Lie subalgebra of polynomials in λ ∈ C, G̃− is the Lie subalgebra of
strictly negative formal series in G̃. Under the pairing

〈u(λ), l(λ)〉p = resλ=0 λpSp(u(λ)l(λ)), u, l ∈ G̃, p ∈ Z, (3)

we can build dual spaces G̃∗+,p and G̃∗−,p ⊂ G̃∗, where

G̃∗+,p ' G̃−λ−p, G̃∗−,p ' G̃+λ−p. (4)

Hence, over the loop algebra G̃ there exists the canonical R-structure giving rise to a
natural Poisson structure given by the Lie-Poisson structure of G̃∗. To augment this
construction further, we need to involve into our analysis the standard central extension
of the loop algebra G̃ via the two-cocycle ωp(a, b) = (a, db/dx)p, a, b ∈ G̃, p ∈ Z, where
we will have some mapping x ∈ R/2πZ → G̃, transforming the loop algebra G̃ into the
current Lie algebra Ĝ := G̃ ⊕C on the circle S1. The current Lie algebra Ĝ is a metrized
Lie algebra of currents on the circle S1 with a nondegenerate scalar product

(a, b)p := resλ=0λ
p
∫ 2π

0
dx Sp(a(λ)b(λ)), (5)

in relation to which we have Ĝ∗ ' Ĝ together with the Lie subalgebra direct sum splitting:

Ĝ = Ĝ+ ⊕ Ĝ−. (6)

We can also convince ourselves that the analog of (4) takes place:

Ĝ∗+,p ' Ĝ−λ−p, Ĝ∗−,p ' Ĝ+λ−p (7)

for all p ∈ Z.
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To find the natural hierarchy of Lie-Poisson structures on the current Lie algebra Ĝ on
Ĝ, we compute the following hierarchies of R-structures and brackets on the D(Ĝ∗) for all
p ∈ Z:

[a, b]R := [Ra, b] + [a,Rb], a, b ∈ Ĝ,

R = (P+ − P−), P±Ĝ := Ĝ±, P 2
± = P±;

{γ, µ}θp(l) := (lp, [∇γ(lp),∇µ(lp)R)0 = (8)

(l, [∇γ(l),∇µ(l)]R)p = (∇γ(l), θp∇µ(l))0,

where by definition lp := λpl ∈ Ĝ∗, if the brackets above are nontrivial.
Let the phase space manifold M ⊂ C∞(R/2πZ;Rm) be defined by means of the

moment map M 3 u :→ l := l[u, λ] ∈ Ĝ, with the fixed set of Casimir gauge type
invariants

I(Ĝ) := {γ ∈ D(Ĝ) : [l − d/dx,∇γ(l)] = 0, x ∈ R/2πZ} (9)

in relation to the standard scalar product (., .)0 upon the current Lie algebra Ĝ. Since
the Lie-Poisson brackets {., .}θp , p ∈ Z, are generally not invariant on the manifold M , we
must apply the well-known Dirac procedure [11, 12] to the bracket (8) extended on some
manifold M . The result is found to be

{γ, µ}θp[u] := {γ, µ}θp −
np∑

j,k=1

{γ, Φ(p)
j }θp‖{Φ(p),Φ(p)}‖−1

(j,k){Φ
(p)
k , µ}θp , (10)

where M := {u ∈ Mext : Φ(p)
j ≡ 0, j = 1, np}. It is important to observe here that the

shift l → lp := λpl ∈ Ĝ, p ∈ Z, in the second bracket of (8) is in full agreement with the
Poisson invariance of the manifold M , determined by the set of Casimir invariants I(Ĝ)
for all p ∈ Z, that is I(Ĝ; (., .)p) ≡ I(Ĝ), where

I(Ĝ; (., .)p) := {γ ∈ D(Ĝ) : [lp − λpd/dx,∇γ(lp)] = 0, x ∈ R/2πZ}. (11)

The scalar Benney-Kaup hierarchy of nonlinear dynamical systems on the functional
manifold M ⊂ C∞(R/2πZ;R2) is associated [12] with the element l ∈ Ĝ∗ if G := sl(2;R)
and

l(x;λ) := σ1(u + λv − λ2) + σ2, (u, v)τ ∈M. (12)

This element admits the extension l → lp = λpl for p = −2 with the constraint functions
having the form:

Φ1 = u
(−2)
2,1 − 1, Φ2 = u

(−2)
3,1 , Φ3 = u

(−2)
2,0 , Φ4 = u

(−2)
3,0 ,

Φ5 = u
(−2)
1,−1 + 1, Φ6 = u

(−2)
2,−1, Φ7 = u

(−2)
3,−1, (13)

Here, by definition, for all p ∈ Z

lp(x;λ) :=
∑
j,a

u
(p)
a,k−p(x)σaλp−k−1, (14)
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and

G∗ := spanR{σa : a = 1, dimG} (15)

is the standard dual space to the semisimple Lie algebra G := spanR{σa : a = 1, dimG},
the element (12) being belonged to ŝl(2;R), where

σ1 =
(

0 1
0 0

)
, σ2 =

(
0 0
1 0

)
, σ1 =

1
2

(
1 0
0 −1

)
, (16)

and functions u
(0)
a,k = u

(p)
a,k−p ∈Mext, a = 1, 3, k ∈ Z. The phase space manifold M ⊂Mext

is defined as follows:

M = {(u, v)τ ∈Mext : Φj = 0, j = 1, 7, u
(−2)
1,1 = u, u

(−2)
1,0 = v}. (17)

The constraint matrix Φ̂ := ‖{Φi,Φj}−2‖, i, j = 1, 4, is nondegenerate, i.e., the constraints
{Φj : j = 1, 4} are of the second class, and the embedding (17) of the basic manifold M
into the extended manifold Mext is coisotropic [13]. As a result, we can obtain the Poisson
structure on the manifold M , being given by the following implectic operator upon T ∗(M):

θ−2[u, v] =
(

0 ∂3/2− (∂u + u∂)
∂3/2− (∂u + u∂) (∂v + v∂)

)
. (18)

In analogous way we can compute the Poisson structure θ−3[u, v] on the manifold M :

{u, u}θ−3[u,v] = −1
8
(−∂3 + 2u∂ + 2∂u)∂−1(−∂3 + 2u∂ + 2∂u),

{u, v}θ−3[u,v] =
1
4
(−∂3 + 2u∂ + 2∂u)∂−1(v∂ + ∂v), (19)

{v, v}θ−3[u,v] =
1
2
(∂v∂−1v∂ − ∂v2 − v2∂ + v∂v + ∂3)− (∂u + u∂).

If the following implectic operators on M are defined by

θ =
(
−(2∂v + 2v∂) 4∂

4∂ 0

)
, η =

(
−∂3 + 2(∂u + u∂) 0

0 4∂

)
, (20)

then we can obtain easily θ−2[u, v] = (1/2)θ(2), θ−3[u, v] = (1/2)θ(3), where
θ(n) := θΛn, Λ = θ−1η, n ∈ Z. Since the implectic operators θ−2[u, v] and θ−3[u, v]
are compatible by construction, i.e., for λ ∈ R the operator θ−2[u, v] + λθ−3[u, v] is also
implectic on the manifold M , it follows that the implectic (θ, η)- pair (20) is also com-
patible. The associated hierarchy of Lax integrable nonlinear Benney-Kaup dynamical
systems is obtained easily from the following generating formula:

du/dtn = −(Λ∗)n(ux, vx) (21)

for all n ∈ Z. As a result, for n = 1 we obtain the Benney-Kaup nonlinear hydrodynamic
system of equations:

du/dt1 = vxxx − 4uvx − 2uxv,

dv/dt1 = −4ux − 6vvx. (22)
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Since Λ∗n(ux, vx)τ = θ grad γn = η grad γn−1 for n ∈ Z, where γn ∈ D(M), n ∈ Z, is
an infinite involutive hierarchy of conservation laws of the hydrodynamic system (22), we
state its complete integrability on each invariant finite-dimensional submanifold MN ⊂M
generated as follows:

M ′
N := {u ∈M : gradL′N [u, v] = 0}. (23)

Here the Lagrangian L′N := −γN(γ)+1 +
N(γ)∑
j=0

ajγj +
N(λ)∑
j=0

bjλj , where λj ∈ D(M), j =

0, N(λ), are the nondegenerated eigenvalues of the generalized periodic spectral problem
df/dx + l[u, v;λ]f = 0, f ∈ L∞(R/2πZ;C2) on the real axis R; aj ∈ R, j = 1, N(γ), bj ∈
R, k = 1, N(λ), are some arbitrary numbers, Z+ 3 N(γ) <∞, Z+ 3 N(λ) <∞.

For further convenience, let us list some conservation laws in exact form:

γ0 =
1
2

2π∫
0

dx v, γ1 =
1
2

2π∫
0

dx (2u + v2/2),

γ2 =
1
2

2π∫
0

dx (uv + v3/4), (24)

γ2 =
1
2

2π∫
0

dx [(u + v2/4)2 + v2
x/4 + v(u + v2/4)], . . . .

Note. In general, we just notice that the Casimir functional hierarchy satisfied the main
equation from (11) in the dual space Ĝ∗:

d

dx
grad γ(l) = [l, grad γ(l)] (25)

for l ∈ Ĝ∗, γ ∈ I(Ĝ∗) by definition. Since we know that the functional γ(l) := Sp S(x;λ) is
the Casimir one, where the matrix S(x;λ) is monodromy matrix of the above mentioned
generalized spectral problem df/dx − l[u;λ]f = 0, f ∈ L∞(R/2πZ;C2), we can find the
following important Novikov-Lax equation on the monodromy matrix S(x;λ):

dS/dx = [l, S], (26)

as grad γ(l) ≡ S(x;λ), x ∈ R, λ ∈ C. This equation has an infinite hierarchy of solu-
tions in general , polynomial in λ ∈ C, which can be found by means of some reccurent
procedure. Due to the following important relationship on the manifold M :

grad γ(l)[u, v] = (s12(x;λ), λs12(x;λ))τ (27)

we have an easy possibility to find all the infinite hierarchy of conservation laws (24)
through simple expansions of (27) in degrees of the spectral parameter λ ∈ C. We will
not stop upon this problem in the article more.
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3 The Novikov-Lax finite-dimensional invariant
reductions on nonlocal submanifolds

The submanifold M ′
N ⊂ M defined in (23) is nonlocal in general due to the presence of

the eigenvalues λj ∈ D(M), j = 0, N(λ), as smooth but nonlocal functionals on M . To
cap with this difficulty, we suggest firstly, as in [5, 14], to extend the phase space M to
M×W 2N(λ)+2, where the space W is some Sobolev subspace in the space L∞(R/2πZ;C2)
of eigenfunctions with the above fixed eigenvalues λj ∈ D(M), j = 0, N(λ), and, secondly,
to introduce into the system of invariants {γj ∈ D(M), j = 0, N(γ); λk ∈ D(M) : k =
0, N(λ)} an additional set of norming functionals as follows:

L′N → LN : −γN(γ)+1 +
N(γ)∑
j=0

ajγj +
N(λ)∑
j=0

bjλj +
N(λ)∑
j=0

cjsj . (28)

Here

sj = (f∗j , ∂l/∂λfj) =
∫ 2π

0
dx f∗j,2(v + 2λj)fj,1 ∈ D(M ×W 2N(λ)+2), (29)

cj ∈ R, j = 0, N(λ), are arbitrary numbers, and

d

dx
fj − l[u, v;λj ]fj = 0, fj = (fj,1, fj,2)τ ,

d

dx
f∗j + l∗[u, v;λj ]f∗j = 0, f∗j = (f∗j,1, f

∗
j,2)

τ , (30)

where fj , f
∗
j ∈ W, j = 0, N(λ), are the eigenfunctions of the right and adjoint eigenvalue

problems for the generalized operator d/dx + l[u, v;λ], acting in L∞(R/2πZ;C2).
As a result, we can construct the following local finite-dimensional submanifold

MN (W ) ⊂M(W ) := M ×W 2N(λ)+2:

MN (W ) = {(u, v; f, f∗)τ ∈M(×W ) : gradLN [u, f, f∗] = 0}, (31)

where, by definition, f := (f0, f2, . . . , fN(λ)), f∗ := (f∗0 , f∗2 , . . . , f∗N(λ)) ∈ WN(λ)+1. Here
we need to note that the gradient-operation in (31) is taken in relation to the suitably
indicated argument variables, that is, to (u, f, f∗)τ ∈M(W ). Let us consider the following
Lagrangian:

LN = −1
2
γ1 + a0γ0 +

N(λ)∑
j=0

bjλj +
N(λ)∑
j=0

cjsj , (32)

and the condition bj = sj , j = 0, N(λ), be satisfied upon the submanifold MN (W ):

MN (W ) := {(u, v; f, f∗) ∈M(W ) :

1 =
N(λ)∑
j=0

f∗j,2fj,1, v/2 = a0/2 +
N(λ)∑
j=0

(λjf
∗
j,2fj,1) + cjf

∗
j,2fj,1, (33)
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cj(∂l∗/∂λ)f∗j = 0, cj(∂l/∂λ)fj = 0}.

The phase space variables (fj , f
∗
j )τ ∈W 2, j = 1, N(λ), satisfy the following eigenfunction

equations:

dfj/dτ = l[u, v;λj ]fj ,

df∗j /dτ = −l∗[u, v;λj ]f∗j , (34)

where we have changed an independent variable: R 3 x ←→ τ ∈ R for some further
convenience. Let us put further cj ≡ 0, j = 0, N(λ), not constraining our investigation of
any effective cases. Therefore, we can obtain in the case λ∗j = λj = ωj ∈ R, j = 0, N(λ),
f∗j,2 = fj,1 = qj ∈W , and

d2qj/dτ2 + ω2
j qj = qjωjv + uqj (35)

for all j = 0, N(λ), under the prolonged naturally constraints (33):

N(λ)∑
j=0

q2
j = 1, v = 2

N(λ)∑
j=0

ωjq
2
j + a0,

N(λ)∑
j=0

qj(dqj/dτ) = 0. (36)

To find an expression for the phase space variable u ∈M , we must multiply each equation
(35) by the adjoint element qj ∈ W, j = 0, N(λ), and sum up the result through j =
0, N(λ):

N(λ)∑
j=0

qj(d2qj/dτ2) +
N(λ)∑
j=0

ω2
j q

2
j − 2

N(λ)∑
j=0

ωjq
2
j

2

= u. (37)

Taking into account the last equation in (36) and differentiating it with respect to τ ∈ R,
we obtain

N(λ)∑
j=0

qj(d2qj/dτ2) = −
N(λ)∑
j=0

(dqj/dτ)2. (38)

Whence and from (37) we get

u = −
N(λ)∑
j=0

(dqj/dτ)2 +
N(λ)∑
j=0

ω2
j q

2
j − 2

N(λ)∑
j=0

ωjq
2
j

2

. (39)

As a result, we have got the Liouville integrable nonlinear Neumann-type oscillatory dy-
namical system

dqj/dτ = pj , dpj/dτ = −ω2
j qj + 2ωj

N(λ)∑
j=0

ωjq
2
j , j = 0, N(λ), (40)

constrained to live on the cotangent space T ∗(SN(λ)) to the sphere SN(λ) = {q ∈ RN(λ)+1 :
N(λ)∑
j=0

q2
j = 1}, that is a simple exercise to the reader using the standard Dirac reduction
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procedure on a coisotropic submanifold defined by constraints of the second class [15, 16].
This means that the dynamical system (35) on T ∗(SN(λ)) in the form

dqj/dτ = pj , dqj/dτ = −ω2
j qj + 2ωjqjv + uqj , (41)

where j = 0, N(λ), is the Hamiltonian system on the cotangent space T ∗(SN(λ)) with

respect to the canonical symplectic structure Ω(2) :=
N(λ)∑
j=0

dpj ×dqj , being gotten from the

oscillatory dynamical system (40) constrained to live on the cotangent space T ∗(SN(λ))
to the sphere SN(λ) with respect to the symplectic structure Ω(2) obtained via the above
mentioned Dirac procedure. Thereby we can write down the following Hamiltonian form
of (41):

dqj/dτ = {H, qj}SN(λ) , dpj/dτ = {H, pj}SN(λ) , (42)

where (q, p)τ ∈ T ∗(SN(λ)), {., .}SN(λ) is the canonical Poisson bracket reduced on T ∗(SN(λ)),
and Hamiltonian

H =
1
2

N(λ)∑
j=0

p2
j +

1
2

N(λ)∑
j=0

ω2
j q

2
j −

1
8
v2. (43)

4 The Moser map and associated with it dual

moment maps into loop Lie algebras

Let us consider the Novikov-Lax monodromy matrix equation (26) reduced upon an in-
variant finite-dimensional submanifold MN (W ) built above. This reduction is called as
the Moser map:N : S(τ ;λ) → S(q, p;λ), where (q, p)τ ∈ T ∗(SN(λ)), the monodromy
matrix S(τ ;λ) being given a priori traceless because of the τ -invariance of the manifold
M . Accomplishing the Moser map of the monodromy matrix S(τ ;λ), λ ∈ C, on the
finite-dimensional submanifold MN (W ) built above, we can state the following

Theorem 1. The monodromy matrix S(q, p;λ) reduced on the invariant submanifold
MN (W ) is given in the componentwise form as follows [12]:

s12(q, p;λ) =
N(λ)∑
j=0

q2
j

λ− ωj
,

s21(q, p;λ) = −1
2

d2S12(q, p;λ)
dτ2

+ s12(q, p;λ)[λv(q, p) + u(q, p)− λ2] =

−
N(λ)∑
j=0

p2
j

λ− ωj
+

N(λ)∑
j=0

ωjq
2
j − λ + a0, (44)

s(q, p;λ) = −1
2

dS12(q, p;λ)
dτ

= −
N(λ)∑
j=0

qjpj

λ− ωj
,
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where, by definition, the matrix

S(q, p;λ) :=

 s(q, p;λ) s12(q, p;λ)

s21(q, p;λ) −s(q, p;λ)

 (45)

is considered to be normalized by means of multiplying by some invariant functional on
M(W ).

/ Sketch of a proof. It is easy to show that the gradient formula (27) gives rise to the
following (after changing variables R 3 x←→ τ ∈ R) expression:

s12(τ ;ω) = δγ(l)(λ), δu |λ=ωj
= −∂γ(l)(λ)/∂λ |ωj

δλj/δu = c̄jq
2
j ,

c̄j = −gγ(l)(λ)/dλ |λ=ωj
, (46)

for all j = 0, N(λ), where we have used such a property of the analytical Casimir functional
γ(l)(λ), λ ∈ C:

γ(l)(ωj)− 2 = 0, (47)

that is γ(l)(ωj) = 2+r(λ)N(λ)
N(λ)∏
j=0

(λ−ωj) for some analytical functional r(λ) ∈ D(M(W )),

λ ∈ C. Since the normalized component s12(τ ;λ) can be shown [17] to be a polynomial in
λ ∈ C of the degree N(λ) with the older coefficient to be the unity, we find the following
interpolating result for this component on the manifold MN (W ):

s12(τ ;λ) =
N(λ)∏
j=0

N(λ)∑
j=0

s̄jq
2
j

λ− ωj
, (48)

where s̄j ∈ D(M(W )), j = 0, N(λ), are some invariant coefficients to be determined

further. Since s12(τ ;λ)→ λN(λ) if λ→∞, from (48) we obtain at once that
N(λ)∑
j=0

s̄jq
2
j = 1.

Normalizing the expression (48) by means of dividing it on the multiplier
N(λ)∏
k=0

(λ − ωk),

we can find from (48) that the main constraint condition
N(λ)∑
j=0

q2
j = 1 will be satisfied, if

the norming invariant coefficients are equal to unity, that is, s̄j = 1 for all j = 0, N(λ). In
this case we can easily obtain the following Moser map:

s12(τ ;λ) :→ s12(q, p;λ) =
N(λ)∑
j=0

q2
j

λ− ωj
, (49)

coinciding with the first expression in (44). Using further the monodromy matrix equation
(26), the whole list of formulae in (44) is recovered successfully. This ends the sketch of a
proof mentioned above. .
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Since the functionals det S(τ ;λ) and Sp Sk(τ ;λ), k ∈ Z, are invariant due to (26), we
can construct the functional γ(λ) := s2(q, p;λ) + s12(q, p;λ)s21(q, p;λ) = −det S(q, p;λ),
giving rise to a finite hierarchy of polynomial conservation laws as follows:

γ(λ) := 1 +
N(λ)∑
j=0

γj
1

λ− ωj
, (50)

where for j = 0, N(λ)

γj = q2
j

ωj −
N(λ)∑
k=0

ωkq
2
k − a0

 +
N(λ)∑
k 6=j

(qjpk − qkpj)2

ωj − ωk
. (51)

The corresponding Hamiltonian function (43) gets the following representation:

H =
1
2

N(λ)∑
j=0

ωjγj |T ∗(SN(λ) . (52)

It is also obvious that the set of functionals (51) is involutive on the adjoint space
T ∗(SN(λ)), that is

{γj , γk}S(N) = 0 (53)

for all j, k = 0, N(λ). Thereby, the Liouville integrability of the dynamical system (41) on
T ∗(SN(λ)) is proved.

Now we are going to give a Lie-algebraic proof of the monodromy matrix equation (26)
as a Lax-type equation for some moment map built via the scheme [1, 2].

Let be given the above considered loop algebra G̃ = sl(2;R) ⊗ C(λ, λ−1), λ ∈ C.
Since the monodromy matrix S(τ ;λ) = gradγ(l) ∈ G̃∗ by construction, we can write the
following its expansion in λ ∈ C at |λ| → ∞:

S(τ ;λ) |MN (W ) = S(q, p;λ)→
∑
j≥1

sjλ
−j +

(
0 0
1 0

)
S

(12)
2 − λ

(
0 0
1 0

)
≡

−λ

(
0 0
1 0

)
+

(
S2λ−2 ⊕

(
0 0
1 0

)
S

(12)
2

)
+

j 6=2∑
j≥1

sjλ
−j ∈ δG̃∗+ + ξ, (54)

where the element ξ =
(

0 0
−λ 0

)
must belong to δG̃0

+ ∩ [δG̃−, δG̃−]0 and be interpreted as

an infinitesimal character of a Lie subalgebra δG̃− ⊂ G̃,

δG̃+ : =


((

0 1
0 0

)
X̄

(21)
2 ⊕ X̄2λ

2
)

+
(j 6=2)∑
j≥1

Xjλ
j

 ,

δG̃− : =


(

Ȳ2λ
−2 ⊕

(
0 0
1 0

)
Ȳ

(12)
2

)
+

(j 6=2)∑
j≥1

Yjλ
j

 , (55)
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with X̄2, Ȳ2 ∈ G chosen in some form. Therefore, we have the following direct sum splitting
of the loop Lie algebra δG̃:

δG̃ = δG̃+ ⊕ δG̃−, δG̃∗ = δG̃∗+ ⊕ δG̃∗−, (56)

where δG̃∗+ ∼= δG̃−, δG̃∗− ∼= δG̃+, the conjugation ”*” being taken with respect to the
following scalar product on G̃:

(a(λ), b(λ))0 := resλ=∞
1
λ

Sp(a(λ)b(λ)) (57)

for any a(λ), b(λ) ∈ δG̃, λ ∈ C, which ensures the wanted property (δG̃∗+)∗ := δG̃+, that is
δG̃+ be a loop Lie subalgebra of the loop Lie algebra δG̃. We notice here that this is the
unique way to do this suitably. If the splitting (56) is made, we can convince ourselves

that the element ξ =
(

0 0
−λ 0

)
indeed is the infinitesimal character of the above built

loop Lie subalgebra δG̃−, that is ξ ∈ δG̃0 ∩ [δG̃−, δG̃−]0 ∈ δG̃∗. As a result, we have the
following Lax-type representation of the Neumann-type oscillatory dynamical system (41)
stemming from (36), (39), (44), (45) and (12):

dS(q, p;λ)
dτ

= [l(q, p;λ), S(q, p;λ)], (58)

where for all λ ∈ C, (q, p)τ ∈ T ∗(SN(λ))

l(q, p;λ) :=

 0 1

u(q, p) + λv(q, p)− λ2 0

 ,

S(q, p;λ) : =
N(λ)∑
j=0

1
(λ− ωj)

−qjpj q2
j

−p2
j qjpj

 + (59)

−λ +
N(λ)∑
j=0

ωjq
2
j + a0

 (
0 0
1 0

)
,

where

u(q, p) = −
N(λ)∑
j=0

[(dqj/dτ)2 + ω2
j q

2
j − 2ωjq

2
j

N(λ)∑
j=0

ωjq
2
j ],

v(q, p) = a0 + 2
N(λ)∑
j=0

ωjq
2
j ,

a0 ∈ R-arbitrary.
A sequel of this paper are we going to devote to a construction of some dual moment

map from the canonical symplectic space T ∗(RN(λ)+1) to the dual space of the above in-
volved loop Lie algebra G̃+. As it would be shown , this moment map generates an infinite
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hierarchy of Lax-type integrable dynamical systems on the adjoint space T ∗(SN(λ)) ⊂
T ∗(RN(λ)+1), one of which just coincides with that generated by the representation of this
construction, and gives rise to the infinite hierarchy of so-called Neumann-Rosochatius-
type dynamical systems on T ∗(SN(λ)), before studied thoroughly in [6,16] by means of
essentially other methods.

We are going to use effectively the above introduced loop Lie algebra G̃, allowing
the direct sum splitting (56). Let a matrix Q ∈ gl(n;R), n ∈ Z+ is arbitrary, be some
fixed matrix with the spectrum being contained inside a large fixed disc D centered at
C 3 λ = 0. Thereby, the group G̃+ := sl(2;R)⊗C(λ), whose the loop Lie algebra is G̃+,
coincides with that of holomorphic matrix functions in λ ∈ C. Let us consider a matrix
manifold M̃ = Mn,2 ×Mn,2 with n ≥ 2 ∈ Z+, where Mn,2 denotes the space of (n × 2)-
matrices over the field of complex numbers. This manifold carries a natural symplectic
structure

Ω(2)(F,G) := Sp(dF ∧ dGτ ), (60)

where (F,G) ∈ M̃ . The symplectic structure (60) allows a right symplectic group action
on the manifold M̃

g(λ) : (F,G) −→ (Fg, Gg), (61)

where, by definition,

Fg : = resλ∈D

(
1

λ−Q
Fg−1(λ)

)
,

Gτ
g : = resλ∈D

(
g(λ)Gτ 1

λ−Q

)
(62)

for any element g(λ) ∈ G̃+, λ ∈ C. It is an easy exercise to prove, using the Hilbert’s
resolvent identity, that the actions (61) , (62) satisfy the standard group action properties
and the symplectic structure (60) be invariant indeed. Now we are going to imbed the
group action (61) of the group G̃+ on the manifold M̃ into some group action space of
a specially constructed deformed group δG̃+ := exp(δG̃+) over the loop Lie algebra basis
δG̃+. To do this, let there be given an element X̄(λ) ∈ δG̃+ as follows:

X̄(λ) := X̄
(12)
2

(
0 0
1 0

)
⊕ X̄2λ

2 +
(j 6=2)∑
j≥1

Xjλ
j , (63)

where X2, Xj ∈ sl(2;R), j − 1 ∈ Z+, are arbitrary. Over the basis of elements (65) we
can construct an isomorphic map δ : G̃+ → δG̃+, which acts via the rule: if an element
X(λ) :=

∑
j∈Z+

Xj+1λ
j ∈ G̃+, the result will be

δ : G̃+ 3 X(λ)→ X̄(λ) ∈ δG̃+ (64)

where X̄
(12)
2 := 1/2X

(12)
2 by definition. Thereby, we can compute now easily the induced

moment map of the group action (61). The following theorem is valid.

Theorem 2. The δG̃+-action (61) is Hamiltonian, with the equivariant moment map
SQ : M̃ → δG̃∗+, where

SQ(F,G;λ) = Gτ (λ−Q)−1F ⊕ resλ=0(Gτλ−1(λ−Q)−1F )(12)
(

0 0
1 0

)
. (65)
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Proof. / Since the action (61) is the cotangent lift of the linear actions (64) on the matrix
manifold Mn,2, it is obviously Hamiltonian. To compute the corresponding moment map
of this action (61), we need to find the Hamiltonian function of some one-parameter group
action (61) on the manifold M̃ by an element g(t;λ) := exp[tX(λ)] ∈ G̃+, X(λ) ∈ G̃+ ,
t ∈ R

dFg

dt
= −resλ∈D

(
1

λ−Q
FX(λ)

)
:= −∂HX̄(F,G)

∂Gτ
,

dGg

dt
= resλ∈D

(
X(λ)Gτ 1

λ−Q

)
:=

∂HX̄(F,G)
∂F

. (66)

From (66) we can easily find that the Hamiltonian function HX(F,G) ∈ D(M̃) takes
the form:

HX(F,G) = resλ∈D

(
Gτ 1

λ−Q
FX(λ)

)
≡(

Gτ 1
λ−Q

F, X̄

)
0

:= (SQ(F,G;λ), X̄)0, (67)

where the element X̄ ∈ δG̃+ and SW (F,G;λ) ∈ δG̃∗+ are defined by (64) and (65). As a
result of (67) the exact form of the moment map (65) is proved. .

To use the result above, we need further to describe a hierarchy of Casimir functionals
on the adjoint space δG̃∗+. We have by definition that the functional δγ ∈ D(G̃∗) is a
Casimir one if [∇γ(S), S] = 0 for all S ∈ G̃∗. This condition is obviously satisfied for

γm := resλ∈DSpSm, n ∈ Z+. (68)

In the case when S(λ) := SQ(F,G;λ) ∈ δG̃∗+, the formula (68) gives only one nontrivial
invariant functional at m = 1. To overcome this difficulty we must use the following
theorem.

Theorem 3. (Adler/Kostant/Symes [9]): Let us choose an infinitesimal character ξ ∈ δG̃∗
of the subalgebra δG̃−, that is, it belongs to the subspace δG̃0

+ ∩ [δG̃−, δG̃−]0:

(ξ, [δG̃−, δG̃−])0 = 0 = (ξ, δG̃0
+)0. (69)

Then:
a) the Hamiltonian vector fields with respect to the standard Lie-Poisson bracket on

δG̃∗+, built of the restriction to ξ + δG̃∗+ of invariants γm ∈ D(G̃∗), m ∈ Z+, are given by

ds/dt = [s + ξ,∇γm(s + ξ)+], (70)

where s ∈ δG̃∗+,(...)+ is the projection on the G̃+ Lie subalgebra;
b) the set of all restrictions to ξ + δG̃+ of invariant functions (68) is involutive with

respect to the standard Lie-Poisson bracket on δG̃∗+.

Proof. The proof of this theorem is not complex and is contained in [18, 19].
The following element of δG̃∗(

0 0
λ− a0 0

)
(71)
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is a one-point orbit of the loop algebra δG̃ with conditions (69) being satisfied. This means
the following lemma is true.

Lemma. The element ξ ∈ δG̃∗ (71) is an infinitesimal character of the loop Lie subalgebra
δG̃−, the direct sum splitting of δG̃ (56) being realized.

Using the above Lemma and Theorems 2 and 3, we can formulate the following im-
portant result as

Theorem 4. The Neumann-type dynamical system (40) takes the Lax type representation
as follows:

dSQ

dτ
=

[
SQ + ξ,

{
det(λ−Q)

λN(λ)
(ξ + SQ)

}
+

]
, (72)

where we have made over (F,G) ∈ M̃ the following reduction to the manifold T ∗(RN(λ)+1):

F :=

 q0, q1, ..., qN(λ)

p0, p1, ..., pN(λ)

τ

, (73)

G := Fσ1 =

 p0, p1, ..., pN(λ)

−q0, −q1, ..., −qN(λ)

τ

, σ1 =
(

0 −1
1 0

)

and used the following Casimir-type Hamiltonian function H ∈ D(G̃∗+):

H =
det(λ−Q)

2λN(λ)
(ξ + SQ)2 (74)

to build the evolution (72).

Proof. / From (65), (71) and (73) for s → SQ ∈ G̃∗+ and n := N(λ) ∈ Z+, we herewith
obtain that the extended element SQ + ξ ≡ S(q, p;λ), which is defined by (44) and (45),
and the suitably reduced manifold M̃ is diffeomorphic to the manifold T ∗(RN(λ)+1), before
built in this chapter. Due to equation (26), we can easily find also that the Hamiltonian
function (43) has the representation (74), that is

H = resλ∈D

{
det(λ−Q)

2λN(λ)
SpS2(q, p;λ)

}
, (75)

the Lax element l[q, p;λ] ∈ G̃+ being found in accordance with (72) as follows:

l[q, p;λ] =
{

det(λ−Q)
λN(λ)

S(q, p;λ)
}

+
. (76)

The latter proves the Theorem. .

The above stated Theorem 4 is easily generalized to the one, giving the Lax-type repre-
sentation of the so-called Neumann-Rosochatius-type dynamical system on the cotangent
space to the sphere SN(λ), previously studied in [6]:

dpj/dτ = −ω2
j qj + v(q, p)qjωj + α2

jq
−3
j , dqj/dτ = pj (77)
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where v(q, p) := 2
∑N(λ)

j=0 ωjq
2
j + α0, α0 is an arbitrary constant, (q, p)τ ∈ T ∗(SN(λ)), that

is,
∑N(λ)

j=0 q2
j = 1,

∑N(λ)
j=0 qjpj = 0. To make this generalization, we need to reduce the loop

Lie algebra G̃ = sl(2;C)⊗C(λ, λ−1) to ũ(1, 1) := u(1, 1)⊗C(λ), λ−1, λ ∈ C, as this has
been done in [2]. Let us consider a space M ′

N (W ) ⊂ MN(λ),2 ×MN(λ),2 as a symplectic
subspace given by

M ′
N (W ) :=

{
(F,G) ∈MN (W ) : G = F̄ σ1

}
, (78)

where the bar over the matrix F means the complex conjugation.
The moment map (65) restricted to the manifold M ′

N (W ) (80) gives a moment map
SQ(F ;λ) ∈ δũ(1, 1)∗+, where, by definition, we have a direct sum splitting of the deformed
loop Lie algebra δũ(1, 1):

δũ(1, 1) := δũ(1, 1)⊕ δũ(1, 1), (79)

found in a natural way from the splitting (56). The restricted moment map SQ(F, λ) is
invariant under the action of the group

⊗
N(λ) U(1) = U(1) × U(1) × ... × U(1) − N(λ)

times) contained in Gl(N(λ);C).
Performing the usual Marsden-Weinstein reduction of M ′

N (W ) to MN (W ) by this⊗
N(λ) U(1)-action at the

⊗
N(λ) U(1)∗-moment map value

√
−2(α0, α1, .., αN(λ)) ∈⊗

N(λ) U(1)∗ gives the injective Poisson map S : MN (W )→ δũ(1, 1)∗+, MN ' T ∗(RN(λ)+1),
given by

SQ(q, p;λ) : =
N(λ)∑
j=0

1
λ− ωj

−qjpj q2
j

−p2
j qjpj

 +

(
0 0
1 0

)
·

N(λ)∑
j=0

ωjq
2
j − (80)

N(λ)∑
j=0

1
λ− ωj

{
αj

√
−2

(
1 0
0 1

)
− 2

α2
j

q2
j

(
0 0
1 0

)}
.

The latter formula (80) gives rise, due to the general Theorem 3, to the following theorem
to be true.

Theorem 5. The Neumann-Rosochatius oscillatory dynamical system (77) on the sym-
plectic manifold T ∗(SN(λ)) is a Hamiltonian completely integrable one with a Lax-type rep-
resentation, being given in the form (72) with the element SQ := SQ(q, p;λ) ∈ δũ∗+(1, 1)
defined by (80).
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