
Finite Element Analysis of Tsunami Propagation 

Hashentuya 
 Graduate School of Environmental Science 

Okayama University 
Okayama City, Japan 

E-mail:dev422252@s.okayama-u.ac.jp 

Watanabe 
Graduate School of Environmental and Life Science, 

Okayama University 
Okayama City, Japan 

E-mail:watanabe@ems.okayama-u.ac.jp 

Kazuhiro Yamamoto 
 Graduate School of Environmental Science 

Okayama University 
Okayama City, Japan 

E-mail:dev421102@s.okayama-u.ac.jp 
 

 
Abstract—A tsunami generated in the North Pacific is 
simulated numerically. A system of partial differential 
equations derived from equations of a fluid dynamics were 
solved numerically by a finite element method. Depth data 
originally given in terms of longitude and latitude are 
transformed to projected coordinates by the Gauss-Kruger 
projection. The governing equations were spatially discretized 
by a finite element method. A resultant system of ordinary 
differential equations were solved numerically using a 
standard ODE solver. A numerical result is verified in 
comparison with a previous result. 

Keywords- Tsunami propagation; Finite element method; 
Numerical solution; PECE Mode  

I.  INTRODUCTION 
The Nankai Trough off coast of Japan is a major source 

of earthquakes and tsunamis in the North Pacific Ocean.  An 
earthquake of 7.5-magnitude generated a tsunami, called 
“Hyuganada tsunami” on April 1, 1968 in the area [1]. In this 
study the propagation of the Hyuganada tsunami is simulated 
with novel techniques. 

Techniques based on shallow water equations have been 
proposed to analyze tsunami waves [2-4]. The system of 
governing partial differential equations are spatially 
discretized by a finite element method, and reduced to a 
system of ordinary differential equations to which a standard 
ODE solver is applicable . 

II. GOVERNING EQUATIONS FOR SIMULATION  
A system of partial differential equations (1) were solved 

numerically to simulate the propagation of tsunami. 
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These equations are based on a continuity equation and 
equations of motion to analyze long wave [5]. Here, g is the 
gravitational acceleration, ),( yxh and ),,( tyxς  are the bottom 
topography of the sea and the water elevation, respectively, 
and ),,( tyxM and ),,( tyxN are obtained by integrating the 
x  -component and the y  -component of the velocity u  and 
v , respectively, 
                                                                                              (2)   
 

Given a triangular mesh covering a domain in the 
xy plain with n nodes and m elements, let ),( yxjΦ be the 

basis function associate with the i th node ),( ii yx i.e., 

),( yxjΦ is a continuous function over the domain, a linear 
function of x  and y  over each element, its support is 
contained in the union of the  elements which have the j th 
node as one of its vertices, and satisfies 
 

                      
(3) 

 
. , ,2, 1, , , 2 ,1 njni ==  

Suppose that the functions ),( yxh , ),,( tyxς , ),,( tyxM , 
and ),,( tyxN  are approximated by a linear combination of 

the basis functions with unknown coefficients  ,jh  ),(tjζ  

),(tM j  )(tN j : 
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Substituting the expressions (4) into the system (1), and set 
),(),( ii yxyx = , and the system (4) becomes 
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The spatial derivatives on the right-hand sides of the 
system (5) are evaluated at ),( yx ),( ii yx= , and can be 
approximated by their average over the elements that contain 
the node ),( ii yx  in common. 

III. VERIFICATION OF NUMERICAL METHOD 

A. Description of the Model Problem 
In this section, our numerical techniques are tested 

against a model problem. The techniques described in the 
previous section are applied to a system of partial 
differential equations obtained from equations of the 
nonlinear shallow-water wave. The numerical solutions 
correspond to time dependent motions in a basin of the 
paraboloid of revolution. A characteristic feature of this 
problem is the moving shoreline. It must be determined as 
a part of the solution of an initial boundary value problem. 

Exact solutions for nonlinear fluid motions with 
moving boundaries are quite rare. The motion is governed 
by the shallow-water wave equations and the shoreline is 
the moving boundary. Some exact solutions to the 
nonlinear shallow-water wave equations have been 
proposed [6]. Here an analytic solution with the planar 
surface is compared with a numerical solution. The water 
dynamics is governed by the shallow-water wave 
equations [6]. 
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The variables u  and v are the x and y componets of 
the velocity. The Coriolis Parameter, f , accounts the 
earth’s rotation, and g is the gravitational acceleration. 
Equation (8) is the continuity equation. 

The surface elevation, h, is positive if it is above the 
equilibrium level, whereas the depth function, D , is 
positive below the equilibrium level. Thus, hD +  is the 
total depth of the fluid [6]. We assume 0=f .The 
instantaneous shoreline is determined by the 
condition, 0=+ hD . We will consider the special 

condition Ll = , where the basin is a parabola of 
revolution, we set 221 yxD −−= . Assume that 

0==== yxyx vvuu , so that == yyxx hh xyh yxh=  

0= . Equations (6), (7) and (8) are becomes 
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B. Numerical Techniques   
A typical finite element with a triangular shape is defined 

by the local nodes 1, 2, 3 yields the shape of element 
interpolation function, ),( yxeφ [7]. Writing a scalar variable 

as yxe 210 αααφ ++= . Over any element, 1φ , 2φ , 3φ is a 

linear function. These are =1φ  +01α  +11α  21α  , 2φ  

02α=  12α+  22α+ , 3φ  03α=  13α+  23α+ .  

Where, 0α , 1α and 2α are constants. In each element, u  is 
written as 
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Where, 1φ , 2φ and 3φ are the approximate values for the 
node numbers 1, 2 and 3. The derivative with respect to 
x and y , are given by 
 
                                                                                            (11) 
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Where, ),,( kji ),3,2,1(=  ),1,3,2(  )2,1,3( . Δ is the 
area of the triangle 123 , Δ  = )({ 321 yyx −  

)( ikj yyx −+  )}( jik yyx −+  2/ . In the same way, v  
and h are written as, 11φvv =  22φv+  33φv+  h  11φh=  

22φh+  33φh+ . We have, 
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At the thi node, an approximate values of ∂u/∂x and 
yu ∂∂ / is the average value of the partial derivations over 

the elements that  contain the node, and given by the 
expressions 
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In the same way, the following expressions are obtained for 
the partial derivatives. 
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Figure 1.  Initial surface of the water and surface of the water at t = 1.4185 

seconds. 

The forth-order Adams-Bashforth-Moulton predictor 
corrector method in PECE mode in conjunction with the 
Runge-Kutta method was use to solve the following system   
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       We set  ∂ui/∂x=∂ui/∂y=∂vi/∂x=∂vi/∂y=0, 

tΔ  = 0.0001, g = 9.81 and frequency =ω  g2 ,η = 0.05.  

Initial conditions are given as 0u  = − ηω  ),sin( 0tω  0v  

−=  ηω  ),cos( 0tω  0h  = 2 η   [ x  )cos( 0tω  − y  

)sin( 0tω  − 0.5 η  ] and 0t = 0.1 at all nodes. 

C. Numerical Results  
The motion of water was simulated for 1.5 seconds. The 

water motion resulting from the numerical simulation are 
shown in the Figure 1. Those are show the initial water 
surface, and the water surface at t  = 1.4185 seconds. On the 
other hand, the motion of water surface according to the 
analytic solution is cyclic with period 2π  = tω , since t  = 

2π /ω  = 2π / g2  ≈  1.4185 seconds (cf. Figure 2) [6]. 
The shallow-water wave equations are solved numerically 
for the water dynamics motion with the moving shoreline. 

The comparison between the analytic solution and the 
numerical solution shows the validity of our numerical 
techniques. 

IV. CALCULATING AREA AND INITIAL CONDITION  
Tsunami wave propagation is simulated over a 

rectangular region, where the east longitude from 1300 to 
1400 and the north latitude from 300 to 360. The coordinate  
system whose origin corresponds to the east longitude 
133030′and the north latitude 330 was set and the Gauss- 

 
Figure 2.  Initial surface of the water and surface of the water at t = 1.4185 

seconds with exact solutions. 

Kruger projection was used to convert longitude/latitude 
to projected coordinate. The interval in the x  axis direction 
was divided into 600 equally spaced intervals. Similarly, the 
interval in the y  axis direction was divided into 360 equally 
spaced intervals. It consists of 432000 elements and 216961 
nodes. 

An initial surface displacement based on results by Aida 
(1972) [8] was set. Initial values of iς were generated, and 

the initial values of iM  and iN  were given as iM  = 0,  = 

0, when  ih   + n
iς  ≤ 0, and 22

ii NM +  =  ± igh  when 

ih  + n
iς  >  0. 

V. CONCLUSIONS  
The 1968 Hyuganada tsunami were analyzed using a 

numerical simulation. The wave height at points near 
Aburatsu, Hososhima, Saiki and Tosashimizu, respectively. 
The  location of those points are (N1, E1) = (31.58◦, 131.42◦), 
(N2,  E2) = (32.43◦, 131.67◦), (N3, E3) = (32.9◦, 132.2◦), 
(N4,  E4)= (32.68◦, 133◦) [8]. Figures 3 - 7 show the profiles 
of wave heights obtained numerically at those four points. 
Wave records at those points are available for comparison. 
These results are important and could provide insights for 
studies in tsunami.     
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     The tsunami wave propagation is simulated for 
approximately 3600 seconds from the first main shock of 
Hyuganada earthquake at 9:42 (JST) on 1 April 1968 with 
various parameters.  (Figures 8- 9). Initial surface and the 
900 seconds are shown in the Figure 8. Figure 9shows the  
tsunami wave at the 1800 seconds and 2700 seconds after it 
was generated. In the future, we will consider the 
optimization of the element division for simulation.  

 
 
 
 
 
 
 
 
 

Figure 3.  Changes of wave height at the checkpoints. 

Figure 4.  Numerical result for wave height at the point 1 (aburatsu). 

 

Figure 5.  Numerical result for wave height at the point 2 (hososhima). 

 
Figure 6.  Numerical result for wave height at the point 3 (saiki). 

 

 

 

 

 

Figure 7.  Numerical result for wave height at the point 4 (tosashimizu). 

   
Figure 8.  Initial surface of the sea and surface of the sea at 900 seconds. 

   
Figure 9.  Surface of the sea at 1800 seconds and 2700 seconds.  
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