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Introduction

1. Consider a ∗-algebra A generated by self-adjoint elements a1, . . . , an (aj = a∗j , j =
1, . . . , n) and the relations

Pk(a1, . . . , an) = 0 (k = 1, . . . ,m). (1)

Here Pk(·) are polynomials in the non-commuting variables a1, . . . , an over C such that
P ∗

k (·) = Pk(·). In other words, A is a quotient of the free ∗-algebra C〈a1, . . . , an〉 generated
by the self-adjoint elements a1, . . . , an with respect to the two-sided ideal generated by
the relations (1).

Representations ot A (∗-homomorphisms π:A → L(H) of the ∗-algebra A into a ∗-
algebra L(H) of bounded operators on a separable Hilbert space H or into a ∗-algebra of
unbounded operators) are of interest both from mathematical point of view and for their
physical applications.

A choice of a representation π(·) corresponds to a choice of a model with observables
Ak = π(ak) (k = 1, . . . , n), which are connected by the relations

Pk(A1, . . . , An) = 0 (k = 1, . . . ,m). (2)

Since the collection of self-adjoint (bounded or unbounded) operators (Ak)n
k=1, satis-

fying the relations (2), defines the representation π(·), from now on we speak of represen-
tations of the relations (2).

The notions of a irreducible (indecomposable) ∗-representation, factor representation,
unitarily equivalent representations, a ∗-algebra of type I (not of type I), etc., have the
same sense as one accepted in the representation theory (see, e.g., [13, 32, 25]). We only
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note that for ∗-representations the concepts of irreducibility and indecomposability mean
the same thing.

2. This article contains (Sect. 1) a brief survey of papers of the Kiev mathematicians
and related papers on the structure of families of bounded and unbounded operators which
satisfy such relations that their study (description of their representations) can be done
by studying the corresponding dynamical system (d.s.). The method of solving operator
problems by using d.s. ascends to the classical papers [18, 19] (see, e.g., [12] and the
bibliography therein). The new aspects in [3, 36, 23, 24, 25, 28], etc., are related to

1) a transition from representations of ∗-algebra to representations of C∗-algebra, or
from representations by unbounded operators to representations by bounded operators;

2) a use of topological properties of dynamical systems, which are, in general, not
one-to-one, to solve operator problems;

3) a need to consider isometries and partial isometries in the operator part of the
problem.

The main object of this paper (Sect. 2–5) is a collection of examples of describing
the representations of certain ∗-algebras by using d.s. In Sect. 2, examples of operator
relations are generated by a non-selfadjoint operator satisfying a relation which can be
reduced to the form AB = BF (A) (A ≥ 0, U being a partial isometry) which, in its turn,
can be done by using the corresponding one-dimensional dynamical system. In Sect. 3,
we consider examples of relations similar to ones comsidered in Sect. 2, but connecting
several operators. Their study can be reduced to a study of collections of commuting
self-adjoint operators A = (Ak), which are connected with a non-selfadjoint operator
B by the relations AkB = BFk(A), and depends on properties of of the corresponding
multi-dimensional d.s. In Sect. 4, we consider similar relations involving a collection of
commuting operators (Bl).

All these objects are taken from papers on mathematical physics. Some results on
their representations are obtained by the authors, another ones are known (see references
below), but can be obtained by using the d.s. formalism.

1 Representations of relations and dynamical systems

Consider the operator relation
AkB = BFk(A). (3)

Here A = (Ak)n
k=1 is a family of selfadjoint, generally speaking, unbounded commuting

operators, B is a bounded (or closed unbounded) operator, F (·) is a continuous real
function on Rn.

1. Unbounded operators [3, 24]. To make sense out of relations (3), consider the
polar decomposition of the operator B = |B|U and the projection P into the initial space
of the partial isometry U .

Definition 1 . We say that operators (Ak) and B satisfy the relations (3), if the following
relations for the operators Ak and B hold

EA(∆)U = UEA(F−1(∆)), [E|B|(∆), EA(∆′)] = 0, (4)
∆ ∈ B(R1), ∆′ ∈ B(Rn),
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where F(·) = (F1(·), . . . , Fn(·)):Rn → Rn, F−1(∆) is a pre-image of ∆ and EA(·) is a
joint resolution of the identity for the commuting family A.

Relation (4) contains only bounded operators and causes no ambiguity. If the operators
are bounded, the relations (3) are equivalent to (4).

2. Dynamical systems (see [36, 24], etc.). From the relations (4) it is easy to see
that to the relations (3) there corresponds a dynamical system on the joint spectrum of
the family A generated by the map λ 7→ F(λ). In fact, if eλ is a joint eigenvector of the
family A corresponding to a joint eigenvalue λ, then Beλ is also a joint eigenvector but
corresponding to a joint eigenvalue F (λ).

Recall that the orbit of the dynamical system is a set Ωλ = {F◦n(λ) | n ∈ Z}. A
periodic orbit λ,F(λ), . . . ,F◦n(λ) = λ is called a cycle. We say that a one-to-one dynamical
system on σ(A) is simple, if there exists its measurable section being the set intersecting
each orbit in a single point. A measure is ergodic with respect to the transform F(·), if
any F-invariant measurable set is of zero or full measure. The condition of being simple
means that any ergodic measure is concentrated on a single orbit.

It follows from (4) that for any F-invariant set ∆, the operator EA(∆) is a projection
on an invariant subspace. Thus, for irreducible representation, the joint spectral measure
of the family A is ergodic with respect to F(·). If the dynamical system is simple, then in
the irreducible case the spectral measure of the family A is concentrated on an orbit. Thus,
there is a correspondence between irreducible representations and orbits of the dynamical
system. If there is no measurable section, then, following J. von Neumann [38], one can
construct a factor representation of the relations (3) which is not of the type I. In this
case, there exist ergodic quasi-invariant measures which are not concentrated on a single
orbit. Thus, there arise a wide class of representations which do not correspond to orbits,
and the description of which is problematic.

3. Involution conditions. If no conditions are assumed on B, then it is a very com-
plex task to describe all irreducible representations of (3) up to unitary equivalence. This
problem contains in itself a standard wild ∗-problem: to describe up to unitary equiva-
lence arbitrary pairs of self-adjoint operators, which in turn contain in itself a problem of
description of any finite collections of self-adjoint operators (see [16, 31, 29]).

In what follows, we assume that there are additional relations between B and B∗. It
follows immediately from (3) (or its accurate version (4)) that the operator |B| commutes
with the operators (Ak). We additionally assume that the operators U and B satisfy the
relation of the form

|B|U = UFn+1(A1, . . . , An, |B|)

(note that this is essentially a relation between B and B∗). In particular, such a relation
holds for the self-adjoint, unitary or normal operator B. Thus, the problem is reduced to
the one for the relations of the form

AkU = UFk(A), (5)

which connect the collection A = (Ak) and the operator U , where U is a unitary, isometric
or partially isometric operator. Note that the assumed conditions imply the following
relations for the operator U : operators U l(U∗)l, (U∗)lU l, p = 1, 2, . . . form a commuting
family (operator U is centered, see, e.g., [6]).
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4. Description of representations correspoonding to an orbit [36, 35, 28]. Fix
an orbit Ω of the d.s. λ 7→ F(λ). Here we study the class of irreducible representations of
(5) corresponding to the orbit.

a) Let the operator U be unitary. Then the joint spectrum of the commuting family
A is simple and the operators act on l2(Ω) by the formulas

Akex = xkex, x = (x1, . . . , xn) ∈ Ω,

Uex = u(x)eF(x). (6)

If the dynamical system acts freely (without cycles), one can pass to a unitary equivalent
representation to get u(x) ≡ 1; in the case of cycle, one can set u(x) ≡ 1 for all x but
one. Thus, in the case of free action there is a unique representation corresponding to the
orbit, and in the case of a cycle (including the case of stationary point, which is a 1-cycle)
there exist a family of finite-dimensional irreducible representations parametrized by the
points of S1.

b) If the operator U is an isometry (or co-isometry, i.e., adjoint to isometry), the
joint spectrum of the family A is simple, in general, only for the free action of the d.s.
Under this assumption, to the orbit there corresponds a countable collection of irreducible
representations which are parametrized by the point x0 ∈ Ω (the highest or the lowest
weight). The spectral measure in this case does not fill the whole orbit but only its part
Ωx = {F◦l(x) | l ≥ 0}. Representations act on l2(Ωx) by the formulas

Akex = xkex,

Uex = eF(x). (7)

c) If the operator U is a partial isometry (but not isometry or co-isometry), and the
d.s. acts freely, to the orbit, there corresponds a countable family of finite-dimensional
irreducible representations of the relations (5), which are parametrized by the points x1,
x2 ∈ Ω (the highest and the lowest weights). They act on l2(Ωx1,x2), where

Ωx1,x2 = {x1,F(x1), . . . ,F◦m(x1) = x2},

by the formulas

Akex = xkex,

Uex = eF(x), x 6= x2, (8)
Uex2 = 0.

We can generalize the relation (5), considering a commuting family (Ul) of (partial)
isometries, which together with the family (Ak) satisfy the relations AkUl = UlFk(A).
Representations of such relations can be investigated by using orbits of the corresponding
Zn-d.s. (see Sect. 4).

2 F -normal operators

Let X be a closed densely defined operator which, together with its adjoint X∗, satisfies
the relation

X∗X = F (XX∗), (9)
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where F (·):R → R is a one-to-one measurable map. Then (see [35, 8]) by applying the
polar decomposition to the operator X =

√
XX∗ U (assuming that kerU = kerX), we

can reduce the study of pairs X, X∗ that satisfy (9) to the unitary classification problem
for pairs C =

√
XX∗, U such that C ≥ 0 is self-adjoint, U is a partial isometry, and

CU = UF (C).

Thus, we can apply the formulas from Section 1 to study the irreducible representations of
the relation (9). However, since ker U = kerX, to the representation with ker U 6= 0 there
corresponds the orbit which contains. Similarly, if kerU∗ 6= 0, then kerX∗ 6= 0 and thus,
ker F (C) 6= 0, i.e., the orbit again contains zero. Moreover, since C ≥ 0, its spectrum lies
in [0,∞) which means that for any λ ∈ σ(C) ⊂ Ω either λ = 0 or λ > 0, F (λ) ≥ 0, and
F−1(λ) ≥ 0. These conditions reduce the set of orbits to which correspond irreducible
representations.

Example 1 (Hermitian q-plane, see [23] etc.) As an example of the relation (9), consider
the pairs of operators X and X∗ satisfying the relation of a (complex) q-plane

XX∗ = qX∗X, q ∈ R1. (10)

For a polar decomposition of the operator X = UC we have UC2 = qC2U . Then
the spectrum of the operator C2 is invariant with respect to the transformation λ 7→ qλ
(q 6= ±1) which is impossible for a bounded nonzero operator.

All irreducible integrable pairs satisfying (10) can be described as follows. Let H0 =
ker C. Then (10) implies that H0 is invariant with respect to U , C. In H0 the operators
are trivial. Thus, for the nontrivial irreducible pairs we have kerC = {0}.

Since the operator U is unitary, it follows from (10) that the spectrum, σ(C2), is
invariant under multiplying by q. By positivity of C2, we also have that for q < 0 there
are no nontrivial pairs satisfying (10). In what follows, we suppose q > 1. In the irreducible
case, the spectrum of C2 is concentrated on an orbit, σ(C2) = {qkλ | k ∈ Z}, λ ∈ [1, q)
being an orbit parameter. Also, the operator U is unitarily equivalent to a shift operator
and we have:

Proposition 1 Any irreducible nontrivial pair satisfying (10) is defined by

Xek =
√

λqk ek+1, k ∈ Z,

for some λ ∈ [1, q).

Remark 1 Note that the operators X +X∗ and i−1(X−X∗) are not essential selfadjoint
on the span of vectors (ek), k ∈ Z (see [2, 1]).

In this relation we used the simplest linear dynamical system λ 7→ qλ. Another one-
dimensional linear mapping λ 7→ qλ + b leads to so-called q-canonical commutation rela-
tions.

Example 2 (q-CCR, [17, 4, 15, 7, 23, 5], etc.) Consider the relation

XX∗ − qX∗X = (q + 1)I. (11)

Applying the arguments above, we put the list of irreducible representations of (11).
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Proposition 2 Let q ∈ (0, 1) . The irreducible representations of (11) are:
a) one-dimensional family:

X1, φ = eiφ

√
1 + q

1− q
, φ ∈ [0, 2π);

b) single infinite-dimensional (Fock representation) : H = l2,

X∞,0ek =
√

F ◦k(0) ek+1, k = 0, 1, . . . ,

(F (λ) = qλ + (q + 1), F ◦k(·) is the k-th iteration of F (·));
c) infinite-dimensional family: H = l2(Z),

X∞,λek =
√

F ◦(k+1)(λ) ek+1, k ∈ Z,

the parameter λ ∈ (F (λ0), λ0]; λ0 > 1+q
1−q is fixed.

If q < −1, there are no representations. If q ∈ (−1, 0], there is a family of one-
dimensional representations and a unique infinite-dimensional one of the form (b). For
q > 1, only the Fock representation (b) exists.

Note that for q < 1 the Fock pair is bounded. On the other hand (see [2, 1, 5], for
q > 1, the operators P = X + X∗ and Q = i(X −X∗), X being the operator of the Fock
representation, are not essential self-adjoint on the span of (ek), k = 0, 1, . . ..

Example 3 (Second-degree mapping, see [36]). The study of ∗-representations of an
algebra with two self-adjoint generators, satisfying the polynomial relation

A2 + B2 +
1
i
[A,B] = (A2 + B2 − 1

i
[A,B]− αI)2, (α ∈ R1),

leads to the relation CU = UP (C), where C is positive, U is unitary and P (·) is a
polynomial of the second order. By using a real linear change of coordinates, one can
reduce it to the form

CU = U(C − αI)2), (α ∈ R1).

(a) For α < −1/4 there are no representations.
(b) α = −1/4. The spectrum of the operator σ(C) ⊂ [1/4,∞). The mapping P (λ) =

(λ + 1/4)2 is one-to-one on [1/4,∞). Denote by P ◦k(·) the k-th iteration of P (·). The
irreducible representations could be:

(1) one-dimensional: H = C1, C = 1/4, U = eiµ (µ ∈ [0, 2π));
(2) infinite-dimensional: H = l2(Z), the operators are

Aek = P ◦k(λ)ek (λ ∈ [1, (1 + 1/4)2),
Uek = ek+1 (k ∈ Z)

(here C is unbounded);
(c) −1/4 < α ≤ 0. The spectrum of the operator σ(C) ⊂ [x0,∞) (we set x0,1 =

1
2(2α + 1 ±

√
4α + 1)). The mapping P (λ) = (λ − α)2 is bijective on [x0,∞). The

irreducible representations are:



REPRESENTATIONS OF ∗-ALGEBRAS AND DYNAMICAL SYSTEMS 139

(1) one-dimensional: H = C1, C = x0, U = eiµ (µ ∈ [0, 2π)) and C = x1, U = eiµ

(µ ∈ [0, 2π));
(2) infinite-dimensional with bounded C: H = l2(Z),

Cek = P ◦k(λ)ek,

Uek = ek+1 (λ ∈ ((λ0 − α)2, λ0], k ∈ Z)

(here λ0 ∈ (x0, x1) is fixed), and with unbounded C:

Cek = P ◦k(λ)ek,

Uek = ek+1 (λ ∈ [λ1, (λ1 − α)2), k ∈ Z)

(here λ1 > x1 is fixed).
For 1/4 ≤ α ≤ 0, any representation of the relation can be represented as an integral

of irreducible representations.
d) Consider the relation for α = α∗ (α∗ = 1.4 . . . is a certain number such that the

mapping P (λ) = (λ − α∗)2: [0, x1] → [0, x1] has cycles of all the periods equal to 2k,
k = 1, 2 . . . and does not have cycles of other periods). The spectrum of the operator
σ(C) ⊂ [0,∞). Then

(1) The mapping P (·) is bijective on [x1,∞) and so H ′
∞ = EC((x1,∞))H is a subspace

invariant with respect to C and U . The operators C and U restricted to H ′
∞ have a very

simple structure, they are “glued” from irreducible ones: unbounded Cek = P ◦k(λ)ek and
the unitary shift operator Uek = ek+1 are both defined on l2(Z) (λ ∈ (x1, P (x1)), k ∈ Z).

(2) The structure of representations with bounded operators on H 	H ′
∞ is more com-

plicated. The mapping P (·): [0, x1] → [0, x1] is not bijective, however, P (·):K → K, where
K = {P ◦n(α∗) | n = 0, 1, . . .} is homeomorphic to the Cantor set, is one-to-one (see, e.g.
[33]). The dynamical system (K, P (·)) has a unique ergodic invariant probability measure
µ0 [20]. Following [38], we can use the measure µ0(·) to construct a factor representa-
tion of the type II1. This shows that the problem of describing an infinite-dimensional
representation of the relation with bounded operators is wild for α = α∗.

e) For α > α∗ the corresponding d.s. and, consequently, the relation have representa-
tions which generate a factor not of the type I.

Example 4 (Algebra of polynomials on a two parameter quantum disc, [14]). For 0 ≤
q ≤ 1 and 0 ≤ µ ≤ 1 ((q, µ) 6= (1, 0)), denote by Polq,µ(D) the unital ∗-algebra over C
generated by two elements z, z∗ that satisfy the following relation

q−1(1− z∗z)− q(1− zz∗) = µ(1− zz∗)(1− z∗z). (12)

This algebra is called an algebra of polynomials on the two parameter quantum disc. By
rewriting (12) in the form

z∗z = (1 +
q

µ
)− 1

µ2

1
(q−1µ−1 − 1) + zz∗

= F (zz∗)

and applying the formalism above, one can easily get a list of irreducible representations
of Polq,µ(D). For instance, if 0 ≤ µ ≤ (q−1− q), any irreducible representation is unitarily
equivalent to
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a) a representation of the one-dimensional series, H = C,

z = eiφ, z∗ = e−iφ, φ ∈ [0, 2π);

b) the highest weight infinite-dimensional representation (the Fock representation),
H = l2, given by

zen =

(
1− q2n(q − q−1)

(q − q−1) + (1− q2n)µ

)1/2

en+1,

z∗en =

(
1− q2(n−1)(q − q−1)

(q − q−1 + (1− q2(n−1))µ

)1/2

en−1.

In other cases similar formulas can be also easily obtained from the corresponding orbits.

3 Representations of relations and multi-dimensional dy-
namical systems

The class of relations considered in the previous section can be extended by including a
family A of commuting self-adjoint operators which are connected with X by the relations
of the form

AkX = XFk(A), k = 1, . . . , n,

X∗X = Fn+1(A, XX∗). (13)

If we consider a polar decomposition for the operators X = CU , then we obtain

AkU = UFk(A), k = 1, . . . , n,

CU = UFn+1(A, C).

These relations have the form (3) and their study can be carried out by using the multi-
dimensional dynamical system

F(λ1, . . . , λn, λn+1) =
= (F1(λ1, . . . , λn), . . . , Fn(λ1, . . . , λn), Fn+1(λ1, . . . , λn, λn+1). (14)

In particular, if the dynamical system (14) has a measurable section, then the joint spec-
trum of the commuting family (A, C) is concentrated on a single orbit, and the description
of the representations is reduced to the calculation of the orbits and the corresponding
coefficients in (6)–(8). In fact, likewise in the previous section, the conditions C ≥ 0 and
ker C = kerU imply the corresponding restrictions on supp C.

Example 5 (A class of quadratic algebras with three generators, see [22]). Consider an
algebra with generators X, Y , Z and the relations

xy − qyx = λy,

zx− qxz = λz, (15)
αyz − βzy = P (x),
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where q ∈ R, q 6= ±1, α, β ∈ C, λ ∈ R and P (·) is a quadratic polynomial in x. The
involution x∗ = x, y∗ = z preserves the relations (16). Using x + (1 − q)−1 instead of x,
we get the relations of the form

xy − qyx = 0,

zx− qxz = 0, (16)
αyz − βzy = P (x),

which we shall consider to the end of this section.
In the self-adjoint generators A = x, B = 1

2(y + z), C = 1
2i(y − z), the relations have

the form

(1 + q)[A,B] = −i(1− q){A,C},
(1 + q)[A,C] = i(1− q){A,B},

1
i (α− β)[B,C] + (α + β)(B2 − C2) = 1

2P (A).

The representations of this algebra were studied in [22]. They are described by the
pairs of (in general, unbounded) operators X = X∗, Y satisfying the relations

XY = qY X,

αY Y ∗ = P (X)− βY ∗Y, (17)

which are a partial case of the relations (13).
In all the cases, an irreducible representation acts on a certain orthonormal basis ek

by the formulas

Xek = λqkek,

Y ek = ykek+1. (18)

Here the range of changing k, the parameter λ and the values of yk ≥ 0 depend on the
specific form of the second relation in (17) and on the representation. Indeed, the second
relation in (17) implies

α|yk|2 + β|yk+1|2 = P (λqk). (19)

Fix the parameter λ. The non-negativity of yk implies that one of the following must hold:
(i) yk > 0 for all k ∈ Z; in this case in (18) k ∈ Z and the representation depends on

the parameter y0;
(ii) yl = 0 for some l and yk > 0 for all k > l or for all k < l; in this case in (18) k > l

(k ≤ l, respectively) and the representation is uniquely determined by λ and l;
(iii) yl = 0, ym = 0 and yk > 0 for all k = l + 1, . . . ,m − 1; in this case in (18) k =

l+1, . . . ,m (the representation is finite-dimensional) and the representation is determined
by λ, l.

Any collection (yk), λ, satisfying (19) and one of the conditions (i)–(iii) determines an
irreducible representation of (16) and vice versa.

Example 6 (Witten’s deformations of su(2) and su(1, 1)). In [9] the representations of
the algebras A± were studied. These algebras are generated by the elements J0, J+, J−
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(J∗0 = J0, J∗+ = J−) satisfying the relations

[J0, J+] = (1 + (1− q)J0)J+,

[J0, J−] = −J−(1 + (1− q)J0),
[J+, J−] = ±2J0(1 + (1− q)J0).

These relations can be rewritten in the form

J0J+q−1 − J+J0 = q−1J+,

J0J1 − qJ−J0 = −qJ−,

J+J− − J−J+ = ±2J0(1 + (1− q)J0),

which are a partial case of the relations (15). Using the described formalism, it is easy to
obtain the list of irreducible representations of these algebras (which essentially coincides
with the one obtained in [9]) by bounded and unbounded operators. Note that the one-
dimensional representations of these algebras form a one-parameter family (in [9] a unique
one is mentioned).

This method can be also applied to a description of representations of the Sklyanin
algebras (in the degenerated case) and suq(2), suq(1, 1) [34] and other quantum algebras.

4 Representations of relations and d.s. generated by Zn

Here we consider a family of involutive algebras having generators (bj)n
j=1 which satisfy

the relations

bjbk = λjk bkbj ,

b∗jbk = µjk bkb
∗
j , (20)

b∗jbj = Fj(b1b
∗
1, . . . , bnb∗n)

(λjk, µjk > 0, 1 ≤ j, k ≤ n).
Note that by the two first relations from (20), the elements b∗jbj , j = 1, . . . , n form a

commuting family. Indeed, for all 1 ≤ j, k ≤ n

b∗jbj b∗kbk = µ−1
kj b∗jb

∗
kbjbk = λjkµ

−1
kj b∗jb

∗
kbkbj = µ−1

kj b∗kb
∗
jbkbj = b∗kbk b∗jbj .

This enables one to avoid problems in defining the functions Fj(·) of a family of (a priori
non-commuting) variables.

Our further aim is to describe, up to unitary equivalence, collections of (in general
setting, closed unbounded) operators Bj , j = 1, . . . , n which satisfy (20). Let Bj = CjUj ,
j = 1, . . . , n (C∗

j = Cj) be the polar decompositions of the (closed) operators Bj .

Lemma 1 Let the operators Bj, j = 1, . . . , n be bounded. Then for the operators Bj =
CjUj, the relations (20) are equivalent to the following relations

C2
j Uk = qjkUkC

2
j , j 6= k,

C2
j Uj = UjFj(C2

1 , . . . , C2
n), j = 1, . . . n, (21)

UjUk = UkUj , UjU
∗
k = U∗

kUj , j < k,



REPRESENTATIONS OF ∗-ALGEBRAS AND DYNAMICAL SYSTEMS 143

where

qjk =

{
µjkλjk, j < k

µjkλ
−1
jk , j > k

.

For these operators [(U∗
l )iU i

l , (U
∗
l )jU j

l ] = 0 and [(U∗
l )iU i

l , U
j
l (U∗

l )j ] = 0 for all i, j ≥ 0,
1 ≤ l ≤ n.

Proof. To prove the lemma, it is sufficient to substitute the polar decompositions into
(20) taking into account that UlU

∗
l = signCl.

We take the relations (21) (together with a commutativity of Ck) as a precise operator
version of the relations (20) for unbounded operators.

On the space Rn we consider a dynamical system generated by the mappings

Fl(x1, . . . , xn) = (q1lx1, . . . , ql−1 lxl−1, Fl(x1, . . . , xn), ql+1 lxl+1, . . . , qnlxn). (22)

We consider only such relations for which

Fj(Fk(·)) = Fk(Fj(·)), j 6= k,

which is equivalent to the following conditions for the functions Fj(·):

Fj(Fk(x1, . . . , xn)) = qjkFj(x1, . . . , xn). (23)

This assumption is satisfied for all examples considered in this paper and in many other
cases. Thus, we have a dynamical system on Rn with an action of the group Zm. Note
that there are examples of another sort (see, e.g., [10, 27, 11], etc.), in which a more
general dynamical systems appear.

In what follows, we also consider only such relations for which there exists a measurable
section of the corresponding dynamical system. By [28], for irreducible collections the
spectral measure of the commuting family Ck, k = 1, . . . , n is concentrated on a single
orbit of the dynamical system Fk(·):Rn → Rn, k = 1, . . . , n.

For a fixed orbit Ω, we now describe all the irreducible collections (Bk)n
k=1, satisfying

(20). Let ∆ ⊂ Ω be the support of the spectral measure of the commuting family (C2
j )n

j=1.
Fine points of the relations (21) are: 1) the operators Cj , j = 1, . . . , n are non-negative
and 2) UjU

∗
j is a projection on (kerC2

j )⊥.
Now we consider the possible types of orbits and describe the corresponding irreducible

representations of (20).

Theorem 1 Any irreducible representation acts in the space l2(∆). For each l = 1, . . . , n,
one of the following is true:

a) The mapping Fl(·) has a stationary point x ∈ ∆ (in this case all the points of ∆ are
also stationary for Fl(·)). If xl = 0, then Bl = 0; otherwise B has the form

Blex = βl xl ex,

where βl is a parameter equal by its absolute value to one;
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b) The mapping Fl(·) has no stationary points. Now the operator Bl has the form

Blex = Fl(x) eFl(x). (24)

Here, the kernel of the operator Bl is a span of the vectors ex such that Fl(x) = 0; the
kernel of the adjoint operator B∗

l is generated by the vectors ex for which xl = 0.

Remark 2 In the case b), different situations occur. Depending on whether the l-th
coordinate of the point x ∈ ∆ is zero or not, the operator Bl or B∗

l has a nontrivial kernel
or not.

Example 7 (The Heisenberg relations for the quantum E(2) group [39, 26]).
In this section we study the ∗-representations of the involutive algebra A generated

by the so-called Heisenberg relations [39]. These relations connect the generators of the
quantum deformation of E(2) group and ones of its dual.

The quantum deformation of the group of motions was introduced and investigated in
[37, 40, 39]. The algebra of “functions on Eq(2)” is an algebra generated by the elements
v and n, v being unitary and n being normal, satisfying the relation

vn = qnv, q > 0. (25)

On the other hand, using the comultiplication in A, the algebra of “continuous func-
tions on Êq(2)”, where Êq(2) denotes the Pontryagin dual of Eq(2), was constructed and
investigated in [39]. This algebra is generated by the elements N and b (N is self-adjoint,
b is normal) with the relation

Nb = b(N + I). (26)

If one consider both the algebras represented on the same Hilbert space, some natural
relations between the generators v, n and the generators N , b (the Heisenberg relations,
see [39]) appear. These relations are:

vN = (N − I)v, vb = q−1/2bv, nN = (N + I)n,

bn∗ = q1/2n∗b, nb− q1/2bn = (1− q2)q−
N+I

2 v. (27)

In the sequel we consider the ∗-algebra A generated by the elements v, n, N and b
such that v is unitary, N is self-adjoint, n and b are normal and the generators satisfy the
relations (25), (26), (27).

Instead of b and N , introduce the new generators, d = bv∗ and M = (1 − q2)q−
N+I

2 .
Then the relations are:

vn = qnv, nn∗ = n∗n, Md = q1/2dM, d∗d = q−1dd∗,

vM = q1/2Mv, vd = q−1/2dv, nM = q−1/2Mn,

nd∗ = q−1/2d∗n, nd− q3/2dn = M.

Considering representations of the algebraA, we have to keep in mind that the operator
M must be positive for 0 < q < 1 and negative for q > 1. We will consider the case
0 < q < 1 (the case q > 1 is quite similar).

We use the following statement.
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Lemma 2 Suppose we have a ∗-representation of the Heisenberg relations (by, generally
speaking, unbounded operators) and there exists a vector f ∈ H such that f ∈ ker n and

nd f − q3/2dn f = M f

(it is supposed that the needed operators are defined on f). Then f = 0.

Proof. Indeed, since n is normal, then f ∈ ker n∗. But this implies

(Mf, f) = (nd f − q3/2dn f, f) = (nd f, f) = (df, n∗f) = 0,

which is impossible by the positivity of M .
Introduce the element

y = nMd +
q−1/2

q2 − 1
M2.

By the previous Lemma, we can suppose that for “good” representations of the Heisen-
berg relations, the operators n and M are invertible and that if we find y, we shall be able
to reconstruct d as

d = M−1n−1y +
1

1− q2
n−1M.

So, replacing d by y we get the following relations:

vn = qnv, nn∗ = n∗n, yM = My, [y, y∗] = 0,

vM = q1/2Mv, vy = qyv, nM = q−1/2Mn, (28)
n∗y = qyn∗, ny = qyn.

From now on, we deal with ∗-representations of the algebra A.

Proposition 3 There are no representations of (28) by bounded operators.

Proof. Indeed, since Mu = q−1/2uM and u is unitary, the spectrum of M is invariant
under the multiplication by q−1/2. But since M > 0, the spectrum of M does not contain
zero and thus is unbounded.

In the space l2(Z), introduce the operators

Sek = ek+1, T ek = kek, Qek = qk/2ek = e
1
2
T ek.

Using the technique developed in [24, 36, 28], one can calculate all the irreducible
representations of the algebra A.

Theorem 2 All the irreducible ∗-representations of the algebra A up to unitary equiva-
lence are:
a) representations in l2(Z)⊗ l2(Z) :

n = λ S ⊗Q2,

v = S∗ ⊗ S∗,

N = α− T ⊗ I,

b =
q−α/2−1

λ
Q(S∗)2 ⊗Q−2S∗;
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b) representations in l2(Z)⊗ l2(Z)⊗ l2(Z):

n = λ S ⊗Q2 ⊗ I,

v = S∗ ⊗ S∗ ⊗ S∗,

N = α− T ⊗ I ⊗ I,

b =
δq(α+1)/2

λ(1− q2)
Q−1(S∗)2 ⊗Q−2 ⊗Q2S∗ +

q−α/2−1

λ
Q(S∗)2 ⊗Q−2S∗ ⊗ S∗,

where λ, δ ∈ (q, 1], α ∈ [0, 1).

Proof. Follows from Theorem 1 applied to (28).

Example 8 (Nonstandard real quantum sphere[21, 28]).
The algebra of functions on the nonstandard real quantum sphere (see [21]) is an

associative ∗-algebra over C with the generators x, y, u, v, c, d and the relations

ux = qxu, vx = qxv, yu = quy, yv = qvy,

vu− uv = (q − q−1) d, xy − q−1uv = yx− qvu = c + d, (29)
dx = q2xd, dv = q2vd, ud = q2du, yd = q2dy,

c being central, and the involution is given by x∗ = y, u∗ = −q−1v, c∗ = c, d∗ = d. One
can rewrite the relations in the form

ux = qxu, u∗x = qxu∗,

u∗u = q−2uu∗ − (1− q−2)(xx∗ − c), x∗x = q2xx∗ + (1− q2)c,
d = xx∗ + uu∗ − c

involving only x, u, c, d.
Given a unitary representation, the operators in the polar decompositions X = CxUx

and U = CuUu satisfy the relations

C2
xUu = UuC2

x, C2
uUx = q2 UxC2

u,

C2
xUx = Ux(q2C2

x + (1− q2)cI),
C2

uUu = Uu(q−2C2
u − (1− q−2)(C2

x − cI)).

The corresponding dynamical system on R2 is generated by the mappings

F1(x1, x2) = (q2x1 + (1− q2)c, q2x2),
F2(x1, x2) = (x1, q

−2x2 − (1− q−2)(x1 − c)),

which are easily checked to satisfy the conditions (23).
An orbit of the dynamical system consists of the points

x(kl) = Fk
1(F

l
2(x)) = (q2kx1 + (1− q2k) c, q2(k−l)x2 − q2k(1− q−2l)(c− x1)),

where x = (x1, x2) and Fk
l (·) is the k-th iteration of the mapping Fl(·).
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The mapping F1(·) has the unique stationary point (c, 0); the stationary points of the
mapping F2(·) are (x, c− x). No orbit has cycles.

Below, we present a list of the orbits of the corresponding sets ∆ and the corresponding
irreducible representations.

1) The stationary point (c, 0). For c = 0 there is the trivial representation X = U = 0,
and for c > 0 to the orbit there corresponds a family of one-dimensional representations
U = 0, X = α c, where |α| = 1. Thus, the set of one-dimensional irreducible representa-
tions is parametrized by the points of a circle.

2) Among the orbits which are invariant with respect to F2(·), representations corre-
spond only to the orbit passing through the point x = (0, c). The set ∆ consists of the
points x(k) = ((1 − q2k)c, q2kc), and the irreducible representations corresponding to the
orbit act on l2 by the formulas

Xek =
√

(1− q2k) c ek+1,

Uek = α qk−1√c ek, |α| = 1, k = 1, 2, . . .

The parameters for this family of representations are c > 0, and α ∈ S1.
3) For c > 0, the orbits passing through (c, y), y > 0 are contained completely in the

first quadrant. They consist of the points (c, q2n), n ∈ Z; their set is numbered by the
points of the circle S1. The corresponding irreducible representations act in l2(Z) by the
formulas

Xek =
√

cek+1,

Uek = λqk ek−1.

The parameters for this family of representations are λ ∈ (q2, 1] ≈ S1 (orbit parameter)
and c ≥ 0.

4) For c > 0, there exist representations corresponding to the orbits passing through
the points (0, y), y > c. Such orbits are also numbered by the points of the circle. The set
∆ consists here of the points

x(k,l) = ((1− q2k) c, q2(k−l)λ + q2k(1− q−2l) c), k ≥ 0, l ∈ Z.

The corresponding irreducible representations in l2(N× Z) are given by the formulas

Xekl =
√

(1− q2k) c ek+1,l,

Uekl =
√

q2(k−l−1)λ + q2k−2(1− q−2l) c ek,l+1, k = 1, 2, . . . ; l ∈ Z.

The parameters for this family are λ ∈ (c + q2, c + 1] (orbit parameter) and c ≥ 0.
5) For c > 0, there exists one more family of representations depending on continuous

parameter. These are ones corresponding to the orbits passing through the points (x, 0),
x > c. Such orbits are numbered by the points of λ ∈ (c + q2, c + 1] ≈ S1. The set ∆
for such orbit is ∆ = {x(kl) = (c − q2k(c − λ), q2k(1 − q−2l)(c − λ)), l ≥ 0, k ∈ Z}; the
irreducible representation corresponding to the parameters c, λ acts on l2(Z×N):

Xekl =
√

c− q2k+2(c− λ)ek+1,l,

Uekl = qk
√

(1− q−2l)(c− λ)ek,l+1,

k ∈ Z, l = 1, 2, . . .
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Unlike the previous case, for c < 0 to the orbit passing through the origin (0, 0), there
corresponds an irreducible representation of this family on l2(N×N):

Xekl =
√

(1− q−2k+2) cek−1,l,

Uekl = q−k
√

(1− q−2l) c ek,l+1, k, l = 1, 2, . . .

6) Finally, for c > 0 to the orbit passing through the origin (0, 0), there corresponds
an irreducible representation (the Fock representation). The set ∆ is now ∆ = {x(kl) =
((1− q2k) c, q2k(1− q−2l) c), k ≥ 0, l ≤ −1}, and the representation acts on l2(N×N) by
the formulas:

Xekl =
√

(1− q2k) c ek+1,l,

Uekl = qk−1
√

(1− q2l) c ek,l−1, k, l = 1, . . .

Note that the operators of this representation, as like as in the cases 1) and 2), are
bounded.

Note that the twisted CCR relations [30] also fit into the class (20). The class of
unbounded representations described in [30] can be obtained by using Theorem 1.
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[3] Berezanskĭı Yu. M., Ostrovskĭı V.L. and Samŏılenko Yu.S., Eigenfunction expantion of families of
commuting operators and representations of commutation relations, Ukr. Math. Zh., 1988, V.40, N 1,
106–109 (Russian).

[4] Biedenharn L. C., The quantum group suq(2) and a q-analog of the boson operators, J. Phys. A,
1989, V.22, L873–L878.

[5] Burban I.M. and Klimyk A.U., On spectral properties of q-oscillator operators, Lett. Math. Phys.,
1993, V.29, 13–18.

[6] Campbell S.L., Linear operators for which T ∗T and TT ∗ commute (II), Pacific J. Math., 1974, V.53,
N 2, 355–361.

[7] Damaskinsky E. V. and Kulish P.P., Deformed oscillators and their applications, Zap. Nauchn. Sem.
LOMI, 1991, V.189, 37–74 (Russian).

[8] Daskaloyanis C., Generalized deformed oscillator and nonlinear algebras, J. Phys. A, 1991, V.24,
L789–L794.

[9] Delbecq C. and Quesne C., Representation theory and q-boson realizations of Witten’s su(2) and
su(1, 1) deformations, Phys. Lett. B, 1993, V.300, 227–233.

[10] Gorodnĭı M.F. and Podkolzin G.B., Irreducible representations of a graded Lie algebra, Spectral
Theory of Operators and Infinite-dimensional Analysis, Inst. Math. Acad. Sci. Ukr. SSR, Kiev, 1984
(Russian), 66–76.

[11] Jørgensen P.E.T., Schmitt L.M. and Werner R.F., Positive representation of general commutation
relations allowing Wick ordering, Preprint Osnabrück, 1993.



REPRESENTATIONS OF ∗-ALGEBRAS AND DYNAMICAL SYSTEMS 149

[12] Kirillov A.A., Dynamical systems, factors and representations of groups, Uspekhi Mat. Nauk, 1967,
V.22, N 5, 67–80.

[13] Kirillov A.A., Elements of the theory of representations, Springer, Berlin, 1970.

[14] Klimek S. and Lesniewski A., Quantum Riemann surfaces. I. The unit disc, Commun. Math. Phys.,
1992, V.146, 103–122.

[15] Koornwinder T.H., Positive convolution structures associated with quantum groups, Probability mea-
sures on groups, X plenum, 1991, 249–268.
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