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Abstract - Sub-graph isomorphism is an important elemental 

issue in graph theory. This paper aimed to cope with the fall in 

performance that the current algorithms meet when the edges of the 

source graph grow up, and proposed an algorithm based on breadth 

first strategy. The algorithm sorts the vertices of the two graphs by 

the degree of out-edge and in-edge and adds all the vertices to the 

feasible pair according to the connection relations of the current 

vertex. The onging solution will be discarded and turn to next when 

any conflicts occur. The experiment shows that it has the better 

performance than current algorithm when the edges increase. 

Index Terms - sub-graph isomorphism, BFS, graph matching, 

vertices pair  

1. Introduction 

Graph is one of the most expressive structures in the 

information science. Applications in many sorts of domains 

apply graph to organize their data to take the advantage of its 

flexibility and expressive capability. The graph was used to 

represent DNA structures in bioscience, to represent molecule 

structures in chemistry, to represent superficial objects in 

image process, to represent social networks in virtual 

community and so on. In the context of graph research, the 

isomorphism between two graphs means a one-to-one map 

from each of the vertices of the one graph to that of the other 

preserving the same topological connections. Sub-graph 

isomorphism is an important research topic in the domain 

with the purpose of finding sub-graphs of a source graph 

which are isomorphic to a given pattern graph.  

The techniques for sub-graph isomorphism can be 

roughly generalized into two classes[1]. One is the 

determination algorithm, also called exact algorithm, and the 

other is inexact algorithm. The exact algorithm, seeking for 

consistence in the vertices as well as the edges while 

matching, returns true only when every vertices of the pattern 

graph have their counterparts in the source graph and each 

edges between two vertices in the pattern graph have 

corresponding edges in the source graph regarding the match 

pair of the vertices. Many literatures fall into this category. 

For example backtracking based method[2], state space based 

method[3], group theory based method[4], decision trees[5,6] 

and etc. Inexact algorithm, with the purpose of reducing 

computing complexity and gaining speed, makes its sense on 

the ground of the fact that there will be noise while 

representing the objects or relations in the real world or the 

occasion that no exact result is required. This method usually 

defines a matching cost to measure the difference of the two 

graphs. The matching process is thus transformed into a 

procedure of minimizing the matching cost. 

Since the exact sub-graph isomorphism on general 

graphs is inherently a NP problem, many research efforts have 

been devoted to some restricted classes of graphs such as 

trees, two-connected outer-planar graphs, and two-connected 

series-parallel graphs and graphs of bounded tree-width[8]. 

There are also many methods have been proposed to decrease 

the calculating expense of the NP sub-graph isomorphism 

algorithms. However, they all fixed their eyes on the influence 

by single vertex. In fact, the pair of vertices has more effect in 

the procedure of seeking the isomorphism because criteria 

based on this can reduce more than one path once. In this 

paper, we proposed an algorithm to make advantage of the 

criteria based on the multi-pair of vertices. Every checking 

round, we check and add all the edge-end vertices of the 

current vertex as part of match. The vertex will be skipped 

when fail to be verified. Experiment shows that it is an 

efficient strategy when the edges of the source graph grow up. 

The rest of the paper is organized as follow. In section 2 

we will present some researches related to our research. In 

section 3 we will present an basic algorithm and an improved 

one; The section 4 is the experiment done on the graph 

database. Section 5 we will conclude the paper and also give 

some possible future work. 

2. Related Work 

The exact sub-graph isomorphism composes two main 

parts. One part is the strategy of searching, and the other part 

is the fitness or pruning function. For a pattern graph with m 

vertices and a source graph with n vertices(m<n) ,there will 

be P(m,n) possible matches. So it’s necessary to organize the 

solution space and search it efficiently and orderly. Ullmann’s 

algorithm uses the permutation trees to present the solutions. 

Every nodes in the tree presents a match between a vertex in 

the pattern graph and a vertex in the source graph, and the 

path from the root to the leaf-node means a possible 

solution[2]. Cordella’s algorithm uses state space to organize 

the solution space, and utilizes the relations of inclusion 

among the states to sequence the solutions[3]. Many 

researches adopted those two techniques as their searching 

strategies. To the second issue, Ullmann etc. defined 

constraints to get rid of the forward branches before hand, 

while Cordella etc define and fitness function F(n,m,v) to do 

the same thing. Both techniques are based on the degree of 

vertices. However, the cordella’s is in a deeper lever. It makes 

use of the relations sufficiently between the vertices and edges 

of the two graphs. In a more theoretical aspect, that how many 

edges a vertex has and the checking order of the number of 
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edges are crucial to the performance. Fedor V. etc. studied the 

influence of the tree-width and path-width to an isomorphism 

algorithm, and had showed that if the tree-width of pattern 

graph is at most t, then there is an algorithm for the sub-graph 

isomorphism running in a certain less time[12]. And even 

more, when the edges of the pattern graph is proportion to the 

vertices on the function of )log( nkO , there is more simple 

algorithm to find whether this pattern graph is isomorphic to a 

source graph with bounded tree-width. According to this, 

MohammadTaghi etc. presented a polynomial-time sub-graph 

isomorphism algorithm under these restrictions[8].  

Apart from those researches exploring the relation 

between vertex and edge, there are also other attempts to lift 

the efficiency of the sub-graph isomorphism algorithm. One 

of the threads is to seek for parallel solution. M. Patwary etc. 

views the graph matching algorithm as a sparse matrix 

algorithm, and presented a parallel version by making use of 

sparse matrix partitioning methodology[14]. [7]describes a 

sub-graph type-isomorphism matching algorithm running on 

MapReduce platform. Another thread of researches is to apply 

some transformation algorithms.  Minsu Cho propose a 

novel progressive framework which combines probabilistic 

progression of graphs with matching of graphs, which 

efficiently re-estimates in a Bayesian manner the most 

plausible target graphs based on the current matching result, 

and guarantees to boost the matching objective at the 

subsequent graph matching[15]. Jaeun Choi etc. proposed a 

multi-objective genetic algorithm for the sub-graph 

isomorphism problem. It designed a new fitness function 

which not only considers directly-visible characteristics of 

current solutions, but also considers the potential for being an 

optimal solution[16]. Those can be a potential weapon to 

address the sub-graph isomorphism, while the efficiency still 

left for verifying when facing the large scale graphs. 

When setting out to attack the sub-graph isomorphism 

problem, the first issue will be faced is to choose the type of 

graphs. Some literatures chose to study the labeled 

graphs[10,13]. As the more recently research shows that 

compared with unlabeled graph, the algorithm on labeled 

graph will gain more efficiency for the constraint effect of the 

labels. But in the research perspective, this effect will be a 

distraction to the sub-graph isomorphism study[11]. In this 

paper we focus our devotion to the pure unlabeled graphs. 

3. Algorithm 

3.1 Preliminary  

Graph can be mainly divided into undirected graph and 

directed graph according to their edge type. In this paper, we 

addressed the directed graph, which is defined as 

),( EVG  .Given two graphs ),( aa EVA  and ),( bb EVB  

)( ba VV  , the exact sub-isomorphism between A and B, is 

to find out all the sets of vertex pairs 

  
bjaiji VvVvvv  ,|,  each set is called an isomorphism 

solution, in which every vertex in graph A has an one-to-one 

mapped vertex in graph B. Fig.1 shows two graphs and two of 

isomorphism solutions. 

 

*the pair set )1,3(),2,2(),3,1(),4,0(  is an isomorphism 

Figure 1 An Example of Sub-graph Isomorphism of R and S 

To get the isomorphism solutions, it is nesessary to 

match all the possible vertex pairs between the two graphs 

and its corresponding edges. For the two graphs SR,  with 

number of vertex )(, srsr NNNN   respected, there will 

be ),( rs NNA  different solutions. Those solutions can be 

organized as a tree. Each solution then can be represented as a 

path from the root to the leaf of the tree. the node in the path 

denotes a match of vertex pair  
bjaiji VvVvvv  ,  , . Thus 

an unqualified pair is more close to the root, it will eliminated 

more unqualified solutions when it is checked. So sorting the 

pairs sounds to be of help to the match performance. One 

natural way to do the match is to sort the pairs first and then 

check every pairs systematically. In each round of the check, 

impose the constraint conditions on it to abandon the 

unqualified pairs. It is doubtless that all the solutions will be 

returned by this way. However it is not bound to have a nice 

performance because not all the pairs deserve a checking 

round. It’s not a trivial cost when the number of graphs 

becomes large. Experiment shows that generating the pairs 

along the edges between the vertices is a relative better 

strategy than those systematical ones. 

3.2 The Basic Breadth First Algorithm 

__________________________________________________ 

;R[],S[] is the vertex array of graph R,S respected, sorted 

by the degrees of the out-Edge and in-Edge, vertex Vi’s 

out-Edge or in-Edge degree are denoted as Dout(Vi) or 

Din(Vi); 

For match between R[0] and each member of S[] 

H         ;H is a feasible set of pairs. 

If feasible(0,i) do 

Add (0,i) to feasible pairs set 

While(Exist non-visited node of SVex(H)) do 

; )}(,)(*,|{)( SVertexiHiiHSVex   

Visited(i)=true 

While(getPairs(H)) do 

Add the vertex pairs(m,n) to H if feasible(m,n). 

If( rNH  ) output the solution. 

End while 

End while 

End for 
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*The feasible(m,n)  function was defined as 

Dout(m)<Dout(n) and (Din(m)<Din(n). 

*The getPairs(H) function fetch a pair(m,n) from H in turn 

and generated all the possible match pairs according to the in 

and out edges of m and n.  

__________________________________________________ 

The algorithm starts with a vertex pair that has the 

maximum edges, then extends the pairs set by adding the both 

ends of out edges of the vertex of pair after checking its 

feasibility. Each pair added into the set will serve as a start 

node to extend new pairs. If all the nodes in graph R have 

been taken into the pairs, a solution is obtained. Otherwise, 

there must be a node in graph R that cannot be matched in the 

rest vertex of graph S and the algorithm will change to 

another start node. The algorithm ends when all the possible 

start nodes have tried. 

Because the vertex are sorted by the degree of out-edges 

and in-edges, the matching process can be ended as earlier as 

the time it first meets the unmatched pair.  

We adopted the uncompressed adjacent matrix to store 

the graph. Fig.2 shows the structures of the two example 

graphs mentioned before. 

 

 

 

Figure 2 Adjacent Matrices for R, S 

3.3 The Improvement Breadth First Algorithm 

This section, we present an improvement algorithm 

based on the former one to reduce the memory cost without 

much decrease in performance. 

In a graph, for every pair of vertex, we can see four types 

of relations between the two vertices. They are no edge, one 

edge in forward direction, one edge in backward direction and 

two edges in bi-direction. In former algorithm, we record 

those information by putting down 0 or 1 in different place. In 

fact, to the algorithm presented ahead, it’s only crucial to 

provide a way to visit the edges by index and the place as well 

as how to present the relation types is not very important. So 

we compress the adjacent matrix by only reserving the place 

for pairs that have the ascendant order for the two vertices. In 

the place where has two possible values of 0 or 1 before, now 

has four optional values of 0-3. We use 0 to present no edge, 1 

to the forward direction edge, 2 to the backward direction and 

3 to the bidirectional edge. The representation which applies 

to the example graphs come the following Fig. 3. 

For example when we need to check whether there is a 

edge from iv  to jv , in the previous algorithm, we just need 

to check whether the value of array V[i][j] is 1. Now in the 

current algorithm we do the checking like 

this: )( jiIf  ,then check whether the value of array V[i][j] 

is more than 2, otherwise, check whether the value of array 

V[i][j] is more than 1.The memory cost in this algorithm is 

about half that of the previous one. 

 

 

 

 

 

 

Figure 3 Compressed Representation for R,S 

4. Experiments 

We do the experiment on the Graph Database realized by 

SIVALab of the University of Naples ''Federico II''. This 

database has been well applied as a benchmark in the graph 

isomorphism research community[17]. The graphs have been 

randomly generated according to six different generation 

models, each involving different possible parameter settings. 

As a result, 84 diverse kinds of graphs are contained in the 

database. Each type is represented by thousands of pairs of 

graphs for which an isomorphism or a graph(sub-graph) 

isomorphism relation holds, for a total of 143,600 graphs. 

There are mainly three parameters of the graphs in the 

databases. One is the number of vertex. There are 10 classes 

numbers in the database from 20 to 1000. The other is 

proportion that the sub-graph contains nodes in the full graph, 

the three of which are 0.2,04 and 0.6 respectively. The third is 

the average branches that the full graph possesses, which 

named as . 

We choose a subset of the graph database to perform the 

experiment. On each category of the graphs with the same 

parameters we run 10 times on different graphs and get the 

average performance. To avoid inconsistence caused by the 

computing platform, we normalize the cost time to some 

scales. For the initial algorithm we denote it as BBF, and for 

the improvement one, we denote it as IBF. We choose VF2 as 

the reference algorithm for it is the most popular algorithm 

nowadays and many other researches have chosen it as the 

reference algorithm. The rows of the tables are for different 

proportions that the sub-graph contains nodes in the full 

graph. The columns of the tables are the number of vertex in 

the full graphs. 

We use three tables to put down the experiment results, 

for 01.0 ,005.0 ,001.0  respected. From the tables, the 

IBF is slower than the BBF almost in every situation. 

However, their time costs are in the same order of 

magnitudes. In some memory sensitive occasion, the IBF can 

be taken as an alternative algorithm for it diminishes the 

memory cost markedly. When the number of vertices is not 

very large, the VF2 performs better than BBF and IBF. But 

with the scale of the graph growing, the proposed algorithm 

gets better than VF2, especially the case of the algorithm 

BBF. And with number of vertices of the target graph getting 

close to that of the source graph, the superiority of the 

proposed algorithms looks like more stable. For maximum 

number of vertices is 1000 and the number of edges is also 

0 1 0 0 1 1 

0 0 1 1 0 0 

0 1 0 0 0 1 

0 1 1 0 1 0 

0 1 0 1 0 0 

1 0 1 0 0 0 

0 1 0 1 

1 0 1 1 

0 0 0 0 

0 0 1 0 

1 0 0 1 3 

 

 

 

 

3 3 2 0 
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 0 

3 0 1 
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not very much in the graph database, further experiment on 

larger database is required to demonstrate the observation. 

Table 1 Time Costs of Three Algorithms at 001.0  

 20 60 80 100 200 400 600 800 1000 

0.2 

BBF 0.89 1.48 1.67 2.02 5.31 10.78 28.09 38.28 176.57 

IBF 1.17 1.74 2.03 2.87 5.98 15.43 44.96 51.08 217.09 

VF2 0.25 0.75 0.80 1.52 4.95 14.91 48.52 65.74 228.91 

0.4 

BBF 0.93 0.85 1.23 1.53 4.17 8.46 27.06 43.76 67.84 

IBF 1.30 1.13 1.64 1.75 4.86 10.32 31.44 52.31 78.69 

VF2 0.17 0.33 0.52 0.88 3.92 10.15 32.62 50.81 81.53 

0.6 

BBF 1.23 2.65 2.43 3.07 8.78 23.16 70.39 113.41 154.86 

IBF 1.54 3.17 2.84 3.65 10.02 26.88 72.50 120.82 179.88 

VF2 0.18 1.46 1.15 2.45 5.56 26.43 64.74 116.23 182.14 

Table 2 Time Costs of Three Algorithms at 005.0  

 20 60 80 100 200 400 600 800 1000 

0.2 

BBF 0.68 2.98 5.87 10.63 8.32 70.38 312.47 376.94 434.80 

IBF 1.05 3.79 6.33 11.52 9.20 90.19 393.51 426.13 482.17 

VF2 0.07 2.21 5.14 9.8 7.56 96.78 421.12 538.27 441.55 

0.4 

BBF 0.87 1.21 1.28 1.37 6.48 38.24 43.87 123.41 578.90 

IBF 1.07 1.52 1.49 1.53 6.97 42.91 54.30 158.35 633.19 

VF2 0.12 0.45 0.65 1.21 6.27 40.19 48.27 151.92 712.83 

0.6 

BBF 0.78 1.03 1.87 2.54 8.62 30.19 60.54 134.93 198.28 

IBF 0.93 1.36 2.01 2.79 9.31 34.85 66.21 153.21 217.33 

VF2 0.19 0.75 1.21 2.83 8.05 33.15 73.78 132.67 206.85 

Table 3 Time Costs of Three Algorithms at 01.0  

 20 60 80 100 200 400 600 800 1000 

0.2 

BBF 1.43 3.28 7.33 10.19 27.84 107.93 182.32 505.89 1078.91 

IBF 1.93 4.16 8.93 12.82 31.25 146.08 217.83 693.21 1245.87 

VF2 0.51 4.67 9.78 12.3 25.37 128.79 253.9 658.79 1164.34 

0.4 

BBF 0.81 1.08 1.36 1.92 18.78 76.59 192.83 453.22 1168.45 

IBF 1.10 1.48 1.87 2.43 23.92 96.08 267.35 526.62 1324.06 

VF2 0.13 0.38 0.71 1.32 20.83 92.42 281.67 578.26 1303.62 

0.6 

BBF 0.87 1.21 1.55 3.08 20.48 44.39 179.03 421.83 579.43 

IBF 1.02 1.47 1.73 3.54 25.03 49.77 198.32 460.65 643.21 

VF2 0.21 0.96 1.67 2.43 16.37 53.96 168.81 464.44 626.71 

5. Conclusion 

This paper proposed algorithms to seek the isomorphism 

from one smaller pattern graph to another larger source graph. 

We based our work on the attempt to explore the relations of 

the vertices and edges. Experiment on the graph database 

shows that the proposed algorithm performed better than the 

benchmark algorithm when the vertices and edges of the 

graphs grow up to some scale. As we pointed out that 

exploring relations of the vertices and edges and seeking in 

parallel are the two main trend for the sub-graph isomorphism 

problem, there are two aspect of work worth to do in the 

future. One is do some experiment on larger scale graphs to 

improve our algorithm, the other is to develop a parallel 

version of the proposed algorithm. 
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