
An Efficient Sub-graph Isomorphism Algorithm Based on

Breadth First Strategy

Tian Weixin

College of Computer and Information Technology, China Three Gorges University, Yichang, China

t_wxin@hotmail.com

Abstract - Sub-graph isomorphism is an important elemental

issue in graph theory. This paper aimed to cope with the fall in

performance that the current algorithms meet when the edges of the

source graph grow up, and proposed an algorithm based on breadth

first strategy. The algorithm sorts the vertices of the two graphs by

the degree of out-edge and in-edge and adds all the vertices to the

feasible pair according to the connection relations of the current

vertex. The onging solution will be discarded and turn to next when

any conflicts occur. The experiment shows that it has the better

performance than current algorithm when the edges increase.

Index Terms - sub-graph isomorphism, BFS, graph matching,

vertices pair

1. Introduction

Graph is one of the most expressive structures in the

information science. Applications in many sorts of domains

apply graph to organize their data to take the advantage of its

flexibility and expressive capability. The graph was used to

represent DNA structures in bioscience, to represent molecule

structures in chemistry, to represent superficial objects in

image process, to represent social networks in virtual

community and so on. In the context of graph research, the

isomorphism between two graphs means a one-to-one map

from each of the vertices of the one graph to that of the other

preserving the same topological connections. Sub-graph

isomorphism is an important research topic in the domain

with the purpose of finding sub-graphs of a source graph

which are isomorphic to a given pattern graph.

The techniques for sub-graph isomorphism can be

roughly generalized into two classes[1]. One is the

determination algorithm, also called exact algorithm, and the

other is inexact algorithm. The exact algorithm, seeking for

consistence in the vertices as well as the edges while

matching, returns true only when every vertices of the pattern

graph have their counterparts in the source graph and each

edges between two vertices in the pattern graph have

corresponding edges in the source graph regarding the match

pair of the vertices. Many literatures fall into this category.

For example backtracking based method[2], state space based

method[3], group theory based method[4], decision trees[5,6]

and etc. Inexact algorithm, with the purpose of reducing

computing complexity and gaining speed, makes its sense on

the ground of the fact that there will be noise while

representing the objects or relations in the real world or the

occasion that no exact result is required. This method usually

defines a matching cost to measure the difference of the two

graphs. The matching process is thus transformed into a

procedure of minimizing the matching cost.

Since the exact sub-graph isomorphism on general

graphs is inherently a NP problem, many research efforts have

been devoted to some restricted classes of graphs such as

trees, two-connected outer-planar graphs, and two-connected

series-parallel graphs and graphs of bounded tree-width[8].

There are also many methods have been proposed to decrease

the calculating expense of the NP sub-graph isomorphism

algorithms. However, they all fixed their eyes on the influence

by single vertex. In fact, the pair of vertices has more effect in

the procedure of seeking the isomorphism because criteria

based on this can reduce more than one path once. In this

paper, we proposed an algorithm to make advantage of the

criteria based on the multi-pair of vertices. Every checking

round, we check and add all the edge-end vertices of the

current vertex as part of match. The vertex will be skipped

when fail to be verified. Experiment shows that it is an

efficient strategy when the edges of the source graph grow up.

The rest of the paper is organized as follow. In section 2

we will present some researches related to our research. In

section 3 we will present an basic algorithm and an improved

one; The section 4 is the experiment done on the graph

database. Section 5 we will conclude the paper and also give

some possible future work.

2. Related Work

The exact sub-graph isomorphism composes two main

parts. One part is the strategy of searching, and the other part

is the fitness or pruning function. For a pattern graph with m

vertices and a source graph with n vertices(m<n) ,there will

be P(m,n) possible matches. So it’s necessary to organize the

solution space and search it efficiently and orderly. Ullmann’s

algorithm uses the permutation trees to present the solutions.

Every nodes in the tree presents a match between a vertex in

the pattern graph and a vertex in the source graph, and the

path from the root to the leaf-node means a possible

solution[2]. Cordella’s algorithm uses state space to organize

the solution space, and utilizes the relations of inclusion

among the states to sequence the solutions[3]. Many

researches adopted those two techniques as their searching

strategies. To the second issue, Ullmann etc. defined

constraints to get rid of the forward branches before hand,

while Cordella etc define and fitness function F(n,m,v) to do

the same thing. Both techniques are based on the degree of

vertices. However, the cordella’s is in a deeper lever. It makes

use of the relations sufficiently between the vertices and edges

of the two graphs. In a more theoretical aspect, that how many

edges a vertex has and the checking order of the number of

International Conference on Advanced Information Engineering and Education Science (ICAIEES 2013)

© 2013. The authors - Published by Atlantis Press 242

edges are crucial to the performance. Fedor V. etc. studied the

influence of the tree-width and path-width to an isomorphism

algorithm, and had showed that if the tree-width of pattern

graph is at most t, then there is an algorithm for the sub-graph

isomorphism running in a certain less time[12]. And even

more, when the edges of the pattern graph is proportion to the

vertices on the function of)log(nkO , there is more simple

algorithm to find whether this pattern graph is isomorphic to a

source graph with bounded tree-width. According to this,

MohammadTaghi etc. presented a polynomial-time sub-graph

isomorphism algorithm under these restrictions[8].

Apart from those researches exploring the relation

between vertex and edge, there are also other attempts to lift

the efficiency of the sub-graph isomorphism algorithm. One

of the threads is to seek for parallel solution. M. Patwary etc.

views the graph matching algorithm as a sparse matrix

algorithm, and presented a parallel version by making use of

sparse matrix partitioning methodology[14]. [7]describes a

sub-graph type-isomorphism matching algorithm running on

MapReduce platform. Another thread of researches is to apply

some transformation algorithms. Minsu Cho propose a

novel progressive framework which combines probabilistic

progression of graphs with matching of graphs, which

efficiently re-estimates in a Bayesian manner the most

plausible target graphs based on the current matching result,

and guarantees to boost the matching objective at the

subsequent graph matching[15]. Jaeun Choi etc. proposed a

multi-objective genetic algorithm for the sub-graph

isomorphism problem. It designed a new fitness function

which not only considers directly-visible characteristics of

current solutions, but also considers the potential for being an

optimal solution[16]. Those can be a potential weapon to

address the sub-graph isomorphism, while the efficiency still

left for verifying when facing the large scale graphs.

When setting out to attack the sub-graph isomorphism

problem, the first issue will be faced is to choose the type of

graphs. Some literatures chose to study the labeled

graphs[10,13]. As the more recently research shows that

compared with unlabeled graph, the algorithm on labeled

graph will gain more efficiency for the constraint effect of the

labels. But in the research perspective, this effect will be a

distraction to the sub-graph isomorphism study[11]. In this

paper we focus our devotion to the pure unlabeled graphs.

3. Algorithm

3.1 Preliminary

Graph can be mainly divided into undirected graph and

directed graph according to their edge type. In this paper, we

addressed the directed graph, which is defined as

),(EVG  .Given two graphs),(aa EVA and),(bb EVB

)(ba VV  , the exact sub-isomorphism between A and B, is

to find out all the sets of vertex pairs

  
bjaiji VvVvvv  ,|, each set is called an isomorphism

solution, in which every vertex in graph A has an one-to-one

mapped vertex in graph B. Fig.1 shows two graphs and two of

isomorphism solutions.

*the pair set )1,3(),2,2(),3,1(),4,0(is an isomorphism

Figure 1 An Example of Sub-graph Isomorphism of R and S

To get the isomorphism solutions, it is nesessary to

match all the possible vertex pairs between the two graphs

and its corresponding edges. For the two graphs SR, with

number of vertex)(, srsr NNNN  respected, there will

be),(rs NNA different solutions. Those solutions can be

organized as a tree. Each solution then can be represented as a

path from the root to the leaf of the tree. the node in the path

denotes a match of vertex pair  
bjaiji VvVvvv  , , . Thus

an unqualified pair is more close to the root, it will eliminated

more unqualified solutions when it is checked. So sorting the

pairs sounds to be of help to the match performance. One

natural way to do the match is to sort the pairs first and then

check every pairs systematically. In each round of the check,

impose the constraint conditions on it to abandon the

unqualified pairs. It is doubtless that all the solutions will be

returned by this way. However it is not bound to have a nice

performance because not all the pairs deserve a checking

round. It’s not a trivial cost when the number of graphs

becomes large. Experiment shows that generating the pairs

along the edges between the vertices is a relative better

strategy than those systematical ones.

3.2 The Basic Breadth First Algorithm

__

;R[],S[] is the vertex array of graph R,S respected, sorted

by the degrees of the out-Edge and in-Edge, vertex Vi’s

out-Edge or in-Edge degree are denoted as Dout(Vi) or

Din(Vi);

For match between R[0] and each member of S[]

H ;H is a feasible set of pairs.

If feasible(0,i) do

Add (0,i) to feasible pairs set

While(Exist non-visited node of SVex(H)) do

;)}(,)(*,|{)(SVertexiHiiHSVex 

Visited(i)=true

While(getPairs(H)) do

Add the vertex pairs(m,n) to H if feasible(m,n).

If(rNH ) output the solution.

End while

End while

End for

243

*The feasible(m,n) function was defined as

Dout(m)<Dout(n) and (Din(m)<Din(n).

*The getPairs(H) function fetch a pair(m,n) from H in turn

and generated all the possible match pairs according to the in

and out edges of m and n.

__

The algorithm starts with a vertex pair that has the

maximum edges, then extends the pairs set by adding the both

ends of out edges of the vertex of pair after checking its

feasibility. Each pair added into the set will serve as a start

node to extend new pairs. If all the nodes in graph R have

been taken into the pairs, a solution is obtained. Otherwise,

there must be a node in graph R that cannot be matched in the

rest vertex of graph S and the algorithm will change to

another start node. The algorithm ends when all the possible

start nodes have tried.

Because the vertex are sorted by the degree of out-edges

and in-edges, the matching process can be ended as earlier as

the time it first meets the unmatched pair.

We adopted the uncompressed adjacent matrix to store

the graph. Fig.2 shows the structures of the two example

graphs mentioned before.

Figure 2 Adjacent Matrices for R, S

3.3 The Improvement Breadth First Algorithm

This section, we present an improvement algorithm

based on the former one to reduce the memory cost without

much decrease in performance.

In a graph, for every pair of vertex, we can see four types

of relations between the two vertices. They are no edge, one

edge in forward direction, one edge in backward direction and

two edges in bi-direction. In former algorithm, we record

those information by putting down 0 or 1 in different place. In

fact, to the algorithm presented ahead, it’s only crucial to

provide a way to visit the edges by index and the place as well

as how to present the relation types is not very important. So

we compress the adjacent matrix by only reserving the place

for pairs that have the ascendant order for the two vertices. In

the place where has two possible values of 0 or 1 before, now

has four optional values of 0-3. We use 0 to present no edge, 1

to the forward direction edge, 2 to the backward direction and

3 to the bidirectional edge. The representation which applies

to the example graphs come the following Fig. 3.

For example when we need to check whether there is a

edge from iv to jv , in the previous algorithm, we just need

to check whether the value of array V[i][j] is 1. Now in the

current algorithm we do the checking like

this:)(jiIf  ,then check whether the value of array V[i][j]

is more than 2, otherwise, check whether the value of array

V[i][j] is more than 1.The memory cost in this algorithm is

about half that of the previous one.

Figure 3 Compressed Representation for R,S

4. Experiments

We do the experiment on the Graph Database realized by

SIVALab of the University of Naples ''Federico II''. This

database has been well applied as a benchmark in the graph

isomorphism research community[17]. The graphs have been

randomly generated according to six different generation

models, each involving different possible parameter settings.

As a result, 84 diverse kinds of graphs are contained in the

database. Each type is represented by thousands of pairs of

graphs for which an isomorphism or a graph(sub-graph)

isomorphism relation holds, for a total of 143,600 graphs.

There are mainly three parameters of the graphs in the

databases. One is the number of vertex. There are 10 classes

numbers in the database from 20 to 1000. The other is

proportion that the sub-graph contains nodes in the full graph,

the three of which are 0.2,04 and 0.6 respectively. The third is

the average branches that the full graph possesses, which

named as .

We choose a subset of the graph database to perform the

experiment. On each category of the graphs with the same

parameters we run 10 times on different graphs and get the

average performance. To avoid inconsistence caused by the

computing platform, we normalize the cost time to some

scales. For the initial algorithm we denote it as BBF, and for

the improvement one, we denote it as IBF. We choose VF2 as

the reference algorithm for it is the most popular algorithm

nowadays and many other researches have chosen it as the

reference algorithm. The rows of the tables are for different

proportions that the sub-graph contains nodes in the full

graph. The columns of the tables are the number of vertex in

the full graphs.

We use three tables to put down the experiment results,

for 01.0 ,005.0 ,001.0 respected. From the tables, the

IBF is slower than the BBF almost in every situation.

However, their time costs are in the same order of

magnitudes. In some memory sensitive occasion, the IBF can

be taken as an alternative algorithm for it diminishes the

memory cost markedly. When the number of vertices is not

very large, the VF2 performs better than BBF and IBF. But

with the scale of the graph growing, the proposed algorithm

gets better than VF2, especially the case of the algorithm

BBF. And with number of vertices of the target graph getting

close to that of the source graph, the superiority of the

proposed algorithms looks like more stable. For maximum

number of vertices is 1000 and the number of edges is also

0 1 0 0 1 1

0 0 1 1 0 0

0 1 0 0 0 1

0 1 1 0 1 0

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1

1 0 1 1

0 0 0 0

0 0 1 0

1 0 0 1 3

3 3 2 0

 2 0 3

 0 3

 0

3 0 1

1 1

 2

244

not very much in the graph database, further experiment on

larger database is required to demonstrate the observation.

Table 1 Time Costs of Three Algorithms at 001.0

 20 60 80 100 200 400 600 800 1000

0.2

BBF 0.89 1.48 1.67 2.02 5.31 10.78 28.09 38.28 176.57

IBF 1.17 1.74 2.03 2.87 5.98 15.43 44.96 51.08 217.09

VF2 0.25 0.75 0.80 1.52 4.95 14.91 48.52 65.74 228.91

0.4

BBF 0.93 0.85 1.23 1.53 4.17 8.46 27.06 43.76 67.84

IBF 1.30 1.13 1.64 1.75 4.86 10.32 31.44 52.31 78.69

VF2 0.17 0.33 0.52 0.88 3.92 10.15 32.62 50.81 81.53

0.6

BBF 1.23 2.65 2.43 3.07 8.78 23.16 70.39 113.41 154.86

IBF 1.54 3.17 2.84 3.65 10.02 26.88 72.50 120.82 179.88

VF2 0.18 1.46 1.15 2.45 5.56 26.43 64.74 116.23 182.14

Table 2 Time Costs of Three Algorithms at 005.0

 20 60 80 100 200 400 600 800 1000

0.2

BBF 0.68 2.98 5.87 10.63 8.32 70.38 312.47 376.94 434.80

IBF 1.05 3.79 6.33 11.52 9.20 90.19 393.51 426.13 482.17

VF2 0.07 2.21 5.14 9.8 7.56 96.78 421.12 538.27 441.55

0.4

BBF 0.87 1.21 1.28 1.37 6.48 38.24 43.87 123.41 578.90

IBF 1.07 1.52 1.49 1.53 6.97 42.91 54.30 158.35 633.19

VF2 0.12 0.45 0.65 1.21 6.27 40.19 48.27 151.92 712.83

0.6

BBF 0.78 1.03 1.87 2.54 8.62 30.19 60.54 134.93 198.28

IBF 0.93 1.36 2.01 2.79 9.31 34.85 66.21 153.21 217.33

VF2 0.19 0.75 1.21 2.83 8.05 33.15 73.78 132.67 206.85

Table 3 Time Costs of Three Algorithms at 01.0

 20 60 80 100 200 400 600 800 1000

0.2

BBF 1.43 3.28 7.33 10.19 27.84 107.93 182.32 505.89 1078.91

IBF 1.93 4.16 8.93 12.82 31.25 146.08 217.83 693.21 1245.87

VF2 0.51 4.67 9.78 12.3 25.37 128.79 253.9 658.79 1164.34

0.4

BBF 0.81 1.08 1.36 1.92 18.78 76.59 192.83 453.22 1168.45

IBF 1.10 1.48 1.87 2.43 23.92 96.08 267.35 526.62 1324.06

VF2 0.13 0.38 0.71 1.32 20.83 92.42 281.67 578.26 1303.62

0.6

BBF 0.87 1.21 1.55 3.08 20.48 44.39 179.03 421.83 579.43

IBF 1.02 1.47 1.73 3.54 25.03 49.77 198.32 460.65 643.21

VF2 0.21 0.96 1.67 2.43 16.37 53.96 168.81 464.44 626.71

5. Conclusion

This paper proposed algorithms to seek the isomorphism

from one smaller pattern graph to another larger source graph.

We based our work on the attempt to explore the relations of

the vertices and edges. Experiment on the graph database

shows that the proposed algorithm performed better than the

benchmark algorithm when the vertices and edges of the

graphs grow up to some scale. As we pointed out that

exploring relations of the vertices and edges and seeking in

parallel are the two main trend for the sub-graph isomorphism

problem, there are two aspect of work worth to do in the

future. One is do some experiment on larger scale graphs to

improve our algorithm, the other is to develop a parallel

version of the proposed algorithm.

Reference

[1] Conte, D.,Foggia, F.,Sansone, C.&Vento, M. Thirty years of graph

matching in pattern recognition. International Journal of Pattern
Recognition and Artificial Intelligence 18(3), 2004, 265–298.

[2] J. R. Ullmann, An algorithm for subgraph isomorphism, J. Assoc.

Comput. Mach. 23, 1976, 31-42.
[3] L. P. Cordella, P. Foggia, C. Sansone and M. Vento, An improved

algorithm for matching large graphs, in Proc. 3rd IAPR-TC15

Workshop Graph-Based Represen- tations in Pattern Recognition, 2001,
149-159.

[4] B. D. McKay, Practical graph isomorphism, Congressus Numerantium

30, 1981, 45-87.
[5] C. Irniger and H. Bunke, Graph matching: filtering large databases of

graphs using decision trees, in Proc. 3rd IAPR-TC15 Workshop

Graph-Based Representations in Pattern Recognition, 2001, 239-249.
[6] M. Lazarescu, H. Bunke and S. Venkatesh, Graph matching: fast

candidate elimination using machine learning techniques, in Proc. Joint

IAPR Int. Workshops SSPR and SPR, 2000, 236-245.
[7] Todd Plantenga. Inexact subgraph isomorphism in MapReduce. J.

Parallel Distrib. Comput. 73, 2013, 164–175.

[8] MohammadTaghi Hajiaghayi, Naomi Nishimura. Subgraph
isomorphism, log-bounded fragmentation, and graphs of (locally)

bounded treewidth. Journal of Computer and System Sciences 73, 2007,

755–768.
[9] V.Bonnici, R. Giugno, A. Pulvirent, D. Shash, A. Ferro.A subgraph

isomorphism algorithm and its application to biochemical data. BMC

Bioinformatics 2013, 14, 7-13.
[10] Cordella, L. P., Foggia, P., Sansone, C., Vento, M.: An Efficient

Algorithm for the Inexact Matching of ARG Graphs Using a Contextual

Transformational Model. In: Proc. 13th ICPR, vol. III, (1996).180-184

[11] Ullmann, J. R. Bit-vector algorithms for binary constraint satisfaction

and subgraph isomorphism. ACM J. Exp. Algor. 15, 1, 2011, 1.6.

[12] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh,
B.V. Raghavendra Rao. Faster algorithms for finding and counting

subgraphs. Journal of Computer and System Sciences 78, 2012,
698–706.

[13] Markus Weber, Marcus Liwicki, Andreas Dengel. Faster subgraph

isomorphism detection by well-founded total order indexing. Pattern
Recognition Letters 33, 2012, 2011-2019.

[14] M. M. A. Patwary, R. H. Bisseling, and F. Manne. Parallel greedy graph

matching using an edge partitioning approach. In Proceedings of the
fourth international workshop on Highlevel parallel programming and

applications, HLPP '10, pages 45-54, New York, NY, USA, 2010.

ACM.
[15] Minsu Cho and Kyoung Mu Lee. Progressive Graph Matching: Making

a Move of Graphs via Probabilistic Voting, Proc. Computer Vision and

Pattern Recognition (CVPR), 2012.

[16] Jaeun Choi, Yourim Yoon, Byung-Ro Moon. An Efficient Genetic

Algorithm for Subgraph Isomorphism. Proceedings of the fourteenth

international conference on Genetic and evolutionary computation
conference. GECCO '12. 361-368.

[17] P. Foggia, C. Sansone and M. Vento, A Database of Graphs for

Isomorphism and Sub Graph Isomorphism Benchmarking, Proc. Third
IAPR TC-15 Int', l Workshop Graph Based Representations, pp.

176-188, 2001.

245

http://www.sigevo.org/gecco-2012/index.html

