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Abstract

We investigate hierarchies of nonlinear Schrödinger equations for multiparticle systems
satisfying the separation property, i.e., where product wave functions evolve by the
separate evolution of each factor. Such a hierarchy defines a nonlinear derivation on
tensor products of the single-particle wave-function space, and satisfies a certain homo-
geneity property characterized by two new universal physical constants. A canonical
construction of hierarchies is derived that allows the introduction, at any particular
“threshold” number of particles, of truly new physical effects absent in systems ha-
ving fewer particles. In particular, if single quantum particles satisfy the usual (linear)
Schrödinger equation, a system of two particles can evolve by means of a fairly simple
nonlinear Schrödinger equation without violating the separation property. Examples
of Galileian-invariant hierarchies are given.

1 Introduction

A growing literature is devoted to properties of nonlinear Schrödinger equations. These
are usually introduced for one of two reasons: (a) to describe particular physical effects
phenomenologically (such as plasma waves), or (b) to explore fundamental arguments that
the basic equations of quantum mechanics might be, or even ought to be, nonlinear (with
the usual linear theory representing only an approximation). Equations introduced on
foundational grounds require special scrutiny since they could, if found to be tenable,
profoundly change our views of basic physics. A wide variety of different nonlinearities,
stemming from distinct philosophies and approaches, have been proposed [1–8, 16–18]; the
cited references are just a small subset, that includes the articles from which we drew some
of the conclusions presented here. Of course, we cannot do full justice to each proposed
equation or set of equations. Clearly some sort of systematization is required, toward
which we believe our results contribute.
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In the present paper we elucidate and explore one desirable property of nonlinear
Schrödinger equations, the so-called separation property in quantum mechanics articulated
in 1976 by Bialynicki-Birula and Mycielski [1]. This property relates the time-evolutions
of systems comprised different numbers of particles. For a hierarchy of N -particle time-
evolution equations, it expresses the physical condition in quantum mechanics that initially
uncorrelated, noninteracting particle subsystems remain uncorrelated as they evolve; i.e.,
that in the absence of interaction potentials, subsets of particles evolve according to their
own evolution equations as if the remaining particles were not present. It is the separation
property that, in principle, allows us to speak of an experiment performed on an “isolated”
system of quantum particles.

We shall make the interesting observation that, for nonlinear time-evolution equations,
the separation property allows some non-uniqueness in the hierarchies that are permitted.
In fact, if the N -particle equations of motion in a hierarchy are specified for N less than
some fixed threshold value, the separation property allows the possibility of new nonlinear
terms appearing for the first time at the threshold value of N . These terms can resemble
in form the nonlinear terms introduced recently by Doebner and Goldin [3]. In particular,
if single quantum particles satisfy the usual, linear Schrödinger equation, a system of two
particles can evolve by means of a fairly simple nonlinear Schrödinger equation without
violating the separation property.

There are arguments that nonlinearity in the time-evolution has undesirable conse-
quences for quantum mechanics. One argument is that any nonlinearity, however small,
would permit controlled superluminal signals to be sent via long-range quantum corre-
lations of the Einstein-Podolsky-Rosen (EPR) type [9, 10]. This is fundamentally in-
compatible with special relativity. Another argument, brought forth specifically for the
Weinberg8 theory, is that the nonlinearity requires either allowing communication between
different branches of an Everett-type multiple-world quantum universe, or else allowing
that physical systems react to the content of the experimenter’s mind [11].

As compelling as these objections may seem, accepting that the derived consequences
of the nonlinearity are undesirable, it may yet be premature to bow to them. The re-
sults mentioned all depend on maintaining in nonlinear theories the standard quantum-
mechanical rules concerning state-function behavior when measurements occur. However,
it is generally believed that the behavior under measurement has some relation to the
time-evolution; a relation presumably obtained by considering the measuring instrument
together with the observed quantum system as a larger system governed by the usual
time-evolution equations with a macroscopic number of particles. This approach has its
own difficulties, and the usual rules of quantum measurement are only obtained by going
to the limit of an infinite apparatus [12]. Nevertheless it raises the counter argument that
in changing the evolution to be nonlinear, the assumptions about what happens when
measurements occur should likewise undergo modifications — possibly eliminating the
difficulties mentioned. There are other arguments for linearity, for example those pro-
vided by Jordan [13]. To come to grips fully with such issues, it is necessary to explore
nonlinear evolutions in more detail. A systematic study is called for even if, in the end,
one concludes that such equations cannot describe fundamental physics. We believe such
a conclusion is not yet warranted.
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2 Characterization and Consequences

of the Separation Property

Here we discuss only noninteracting systems. We assume interacting systems are to be
described by adding appropriate terms, such as inter-particle or external potentials, to
the equations describing noninteracting systems. With nonlinear evolutions, it is even
problematic to state in advance exactly what is meant by a lack of interaction, or to
identify the interaction terms in an equation. One property of interactions, however, is
that they generally produce correlations in initially uncorrelated systems. The absence of
this effect can be taken as expressing the lack of interaction.

In what follows we maintain the usual interpretation of the wave function ψ as a pro-
bability amplitude, so that |ψ|2 is the joint probability density in configuration space for
the particle positions. We disregard spin, and any internal degrees of freedom. By an
“uncorrelated” system we mean that ψ is the product of two fewer-particle wave functions
depending on different particle coordinates. What we shall mean by the separation pro-
perty is that the evolved total wave function continues to be a product, in which the two
factors evolve according their respective evolution laws as though the particles described
by the other factor did not exist. This incorporates the notion of lack of interaction.
Given this property, the physical laws governing a given system will be independent of the
existence of other systems uncorrelated to the given one.

The separation property is thus a property not of a single equation but of a hierarchy
of equations, one for each system having its own number and species of particles. Here
we are disregarding considerations of particle statistics due to indistinguishability; and by
not imposing any permutation symmetry properties on the wave functions, we implicitly
treat all of the particles as distinguishable. However, two such particles may obey identical
one-particle evolution equations, in which case we say they belong to the same species of
particle.

We write the equations in a hierarchy as

ih̄∂tψ
(s) = Fs(ψ(s)) (1)

where ψ(s) = ψ(s)(t, x1, . . . , xN ) is a time-dependent N -particle complex-valued wave-
function, the xk = (x1

k, . . . , x
d
k) are the position coordinates of the k-th particle in d-

dimensional space, and s is an N -tuple of particle species labels, s = (s1, . . . , sN ), indi-
cating to which species each one of the particles belongs. We shall drop this index from
the wave-function when no confusion can arise. In (1) Fs is a quite general operator, not
necessarily a linear one, depending on ψ and ψ̄. We adopt a formal approach, disregar-
ding domain considerations for all operators considered, and questions of the existence
and uniqueness of solutions to the initial-value problem for the time evolution.

We shall generally use the letter ψ for time-dependent wave-functions, and φ for func-
tions of just the particle positions.

It is desirable to adopt some conventions or assumptions reflecting the arbitrariness
of how one labels the physical particles with the integers {1, . . . , N}. We opt to have a
multiplicity of equations describing the same physical system; that is, for any permutation
π of {1, . . . , N}, any N -particle species label s, and any function φ(x1, . . . , xN ), we set
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πs = (sπ(1), . . . , sπ(N)) and (πφ)(x1, . . . , xN ) = φ(xπ(1), . . . , xπ(N)), and then assume that

Fπs(πφ) = π(Fs(φ)). (2)

Thus, the operators Fs with permuted indices describe the same physical system with the
particles labeled in a different manner.

Definition 1. Let F be a family of multi-particle operators indexed by species labels.
Denote by F[N ] the sub-family of N -particle operators. If the subfamily F[N ] satisfies (2),
we say it satisfies the permutation property, and if each such subfamily does so, we say
the same of F .

We now come to the separation property. Let n1, . . . , nr be positive integers corres-
ponding to the numbers of particles in each of r different subsystems. Let N = n1+· · ·+nr

be the total number of particles. Let φj (j = 1, . . . , r) be functions whose arguments are
respectively the nj position variables. Let φ1 · φ2 · · ·φr be the (tensor) product function
of N position variables given by the product

φ1(x1, . . . , xn1)φ2(xn1+1, . . . , xn1+n2) · · ·φr(xn1+···+nr−1+1, . . . , xr). (3)

Let s(j) be the nj-tuple of species labels for the j-th subsystem, and s be the N -tuple of
species labels obtained by concatenating the s(j) in order of increasing j. The separation
property now requires that given functions ψj of time and nj particle position variables
that are solutions of the nj-particle evolution equations with species labels s(j), then
ψ1 · ψ2 · · ·ψr must be a solution of the N -particle evolution equation with species label s.
Thus

ih̄∂t(ψ1 · · ·ψr) = Fs(ψ1 · · ·ψr). (4)

Had we not assumed the permutation property, we would have had to consider tensor
products in which the order of the variables is not the same as that given in (3); but with
this assumption these combinatorially more complex situations are equivalent to the ones
considered.

Definition 2. We say a hierarchy of evolution equations satisfies the separation property
if (4) holds, where the symbols are defined in the previous paragraph.

Using

∂tψ1 · · ·ψr = ∂tψ1 · ψ2 · · ·ψr + ψ1 · ∂tψ2 · · ·ψr + · · ·+ ψ1 · ψ2 · · ·ψr−1 · ∂tψr

together with the evolution equations for the factors, we see that the hierarchy formally
satisfies the separation property if and only if

Fs(1)(φ1) · φ2 · · ·φr + · · · + φ1 · · ·φr−1 · Fs(r)(φr) = Fs(φ1 · · ·φr) (5)

for all functions φj of nj particle position variables. We can rewrite this in a more elegant
form as:

Fs(1)(φ1)
φ1

+ · · ·+ Fs(r)(φr)
φr

=
Fs(φ1 · · ·φr)
φ1 · · ·φr

. (6)

Thus, any Fs is determined on product functions by operators having lower-order
indices obtained from a partition of s. Such constraints, however, do not fix Fs uniquely,
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given the operators with lower-order indices. One can always add any operator that
vanishes identically on product functions. We shall investigate such non-uniqueness below.

Definition 3. A family F = (Fs) of multi-particle operators indexed by species labels is
called a tensor derivation or simply a derivation if (6) holds.

The reason for this name is that (5) and (6) are formally the Leibniz rule for a tensor
product, and have their roots in the fact that ∂t is a derivation.

A hierarchy of evolution equations thus satisfies the separation property if the corres-
ponding family of operators is a tensor derivation. The converse should also be true under
some general conditions, but this involves proving existence and uniqueness theorems. It
is useful to keep the notions separate.

Although (6) may be used to define Fs on product functions by means of the left-hand
side, it is important to note that the operators on the left-hand side cannot be given freely.
To see this, let kj (j = 1, . . . , r) be any complex numbers with

∏
kj = 1. Replacing φj by

kjφj , the right-hand side of (6) does not change; but the left-hand side becomes

Fs(1)(k1φ1)
k1φ1

+ · · ·+ Fs(r)(krφr)
krφr

. (7)

Thus (7) must be independent of the numbers kj . Using this for r = 2 and setting s(1) = a,
s(2) = b we have

Fa(kφ1)
kφ1

− Fa(φ1)
φ1

=
Fb(φ2)
φ2

− Fb(k−1φ2)
k−1φ2

.

As each side of this equation depends on different particle position variables and different
species labels, both sides must be a function c(k) of k only. Thus we deduce: Fs(kφ) =
kFs(φ) + kc(k)φ. Setting k = 1 in this equation, we obtain c(1) = 0. Using expression
(7), we deduce that

∑
j c(kj) is independent of kj . From 1 · 1 = z · z−1 one deduces

c(z−1) = −c(z) and then from 1 · 1 · 1 = (zw)−1 · z ·w one has c((zw)−1)+ c(z)+ c(w) = 0.
Thus we have the functional equation, c(zw) = c(z) + c(w). Using this on the polar form
z = reiθ, we find c(z) = c(r) + c(eiθ). Specializing to positive real numbers, and then to
unimodular complex numbers, we have:

c(rs) = c(r) + c(s) ,

c(ei(θ+φ)) = c(eiθ) + c(eiφ) .

To solve the first of these, note that if c(r) is locally integrable, we can integrate both
sides with a C∞ function f(s) having compact support on the positive real axis. Then one
has that c is a constant plus a (product) convolution of itself with f ; thus c must be C∞.
Differentiating with respect to s and setting s = 1, we get rc′(r) = c(r); which means that
c(r) = p ln r for some complex number p.

To solve the second equation, we set d(θ) = c(eiθ); then d(θ + φ) = d(θ) + d(φ),
and proceeding in a similar manner, we find that any locally integrable solution is of the
form d(θ) = iqθ for some complex number q (we put in the factor i for mathematical
convenience). We thus find that the locally integrable solutions for c are of the form

c(z) = p ln |z|+ iq arg z.
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If q 6= 0, then the above solution is not everywhere continuous; but it can be chosen
continuous on any complex domain where arg z can be defined in a single-valued manner.
Alternatively, we can consider c to be defined on the Riemann surface of the logarithm
function.

We note that p ln |z| + iq arg z can be construed as ln z(p,q) where, for z = reiθ, one
defines the “mixed power” z(p,q) = rpeiqθ as an operation in which the two factors in the
polar form of z are raised to different powers! Such an operation is natural to physics, as
the phase and modulus of the wave function play very different physical roles — and thus
can acquire different treatments.

We have now shown the following result.

Theorem 1. If F is any tensor derivation, then there are complex numbers p and q such
that for any complex number k and species label s, we have

Fs(kφ) = kFs(φ) + k(p ln |k|+ iq arg k)φ. (8)

We shall not delve further here into how the ambiguity in defining the arg function is
to be resolved in practice. In what follows, it is enough to assume that arg is defined as
a continuous function on an open set containing the positive real axis, that it vanishes on
that axis, and that arg k is sufficiently small for all possible multipliers.

Note that p and q are characteristic of the whole hierarchy. This means that if
the nature obeys non-linear quantum mechanics with the separation property, then the
logarithmic indices are new, universal physical constants with the dimension of energy.
We shall see below that probability conservation implies p and iq are real. The existence
of new universal physical constants in nonlinear theories was already noted by Bialynicki-
Birula and Mycielski [1]. In their theory q = 0 (and p is real), so they spoke only of one
constant.

Definition 4. The property expressed by (8) we call the mixed-logarithmic homogeneity
property. We say of an evolution operator that satisfies this property that it is mixed-
logarithmic homogeneous. We call the complex numbers p, q respectively the first and
second logarithmic index. If p = q = 0, we say we have strict homogeneity, and an
evolution operator whose indices are zero is said to be strictly homogeneous.

The failure of strict homogeneity means that if ψ is a solution of ih̄∂tψ = Fs(ψ), then
a multiple kψ is not a solution. However, we can multiply by a time-dependent factor
w(t) and require that w(t)ψ be again a solution. This leads to the equation

ih̄∂tw = (p ln |w|+ iq argw)w.

Let w(t) = |w(t)|eiθ(t), p = |p|eiσ, and q = |q|eiτ . Then the above displayed equation is
equivalent to the system,

∂t

(
ln |w|
θ

)
=

1
h̄

(
|p| sinσ |q| cos τ
−|p| cosσ |q| sin τ

) (
ln |w|
θ

)
(9)

which, being a linear system with constant coefficients, has a unique solution for all times
once w(0) is given. We can let w(0) be any non-zero complex number.

It is instructive to verify the homogeneity property for various equations that have
been proposed in the literature. Phenomenological equations generally do not satisfy it,
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while those proposed on fundamental grounds generally do — even though the authors
may not have explicitly considered the separation property. Consider the one-particle
equations of the form ih̄∂tψ = −(h̄2/2m)∇2ψ + κG(ψ), where κ is a (real or complex)
physical constant coefficient. Typical expressions for G(ψ) taken from the literature are
the following:

(NLSE) |ψ|2ψ

(DG) and (FC) ∇2ψ + (|∇ψ|2/|ψ|2)ψ

(BM) ln |ψ|ψ

(K) ln(ψ/ψ̄)ψ .

These are, respectively, the much studied phenomenological nonlinear Schrödinger equati-
on [14], and the equations introduced by Doebner and Goldin [3], Fushchych and Cherniha
[16–18], Bialynicki-Birula and Mycielski [1], and Kostin [4]. Among them (NLSE) is not
mixed-logarithmic homogeneous, (DG) is strictly homogeneous, (BM) has p 6= 0 and q = 0,
while (K) has p = 0 and q 6= 0.

It is interesting to note that if G is any mixed-logarithmic homogeneous operator with
logarithmic indices p and q, then G0(φ) = G(φ) − [p ln |φ| + (q/2) ln(φ/φ̄)]φ is strictly
homogeneous. Thus, modulo strictly homogeneous operators, the (BM) and (K) terms
give the most general way to deviate from strict homogeneity. This may be a bit mislead-
ing, though, since it does not mean that in a given expression one will see such terms.
For instance, G(φ) = (ln |∇φ|)φ has p 6= 0 but no explicit (BM) term. It can however
be rewritten as ln(|∇φ|/|φ|)φ+ (ln |φ|)φ, which is a strictly homogeneous operator plus a
(BM) term.

3 A Canonical Procedure for Constructing

N-Particle Hierarchies

Here we develop a canonical decomposition and construction of hierarchies of N -particle
time-evolution equations satisfying the separation property.

Returning to equation (6), suppose we take a particular instance of that equation, i.e.,
one with fixed species labels s(j); where the operators on the left-hand side are mixed-
logarithmic homogeneous. If we have a nonzero function φ of the form φ1 · · ·φr, the φj

can be extracted from φ only up to multiplicative constants whose product is 1. Since the
left-hand side of (6) is precisely insensitive to such constants, it can be construed as an
operator acting on φ. However, more is true: one can extend this operator to arbitrary
functions, not necessarily tensor products, and thereby define Fs in such a way that this
particular instance of (6) is true.

To see this, let G be an operator acting on functions of ` particle positions, producing
functions of the same type. Let m > `, and let J = (j1, . . . , j`) be an `-tuple of distinct
elements of the set of indices {1, . . . ,m}, in increasing order. A function φ(x1, . . . , xm) ofm
particle positions can be viewed as a parameterized family of functions φy(xj1 , . . . , xj`

) of
` particle positions, where each xi for i 6∈ {j1, . . . , j`} is taken as a parameter yi. Applying
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G to each member of this family produces another family G(φy)(xj1 , . . . , xj`
), which we

reinterpret back as a function GJ(φ)(x1, . . . , xm). This defines a new operator GJ .
Let now Jj be the nj-tuple of successive integers from n1 + n2 + · · · + nj−1 + 1 to

n1 + n2 + · · ·+ nj . Define the operator F#
s by

F#
s (φ) =

∑
j

F
Jj

s(j)(φ)− (r − 1)(p ln |φ|+ iq arg φ)φ. (10)

We claim that F#
s is an operator satisfying the given instance of (6). To see this, apply

F#
s to φ = φ1 · · ·φr. The term F

Jj

s(j)(φ) has the operator Fs(j) acting on φj , multiplied
by the product of the rest of the functions, which however depend on other variables —
so these can be construed as just parameterized multipliers. Thus by the homogeneity
property, letting φ̂j denote the product

∏
k 6=j

φk, we have

F
Jj

s(j)(φ) = φ̂jFs(j)(φj) + φ̂j(p ln |φ̂j |+ iq arg φ̂j)φj .

Summing these to evaluate (10), and remembering that φ̂jφj = φ,
∑

j ln φ̂j = (r − 1) lnφ,
and

∑
j arg φ̂j = (r − 1) arg φ, we see that (6) is satisfied. It is easily checked that F#

s so
constructed automatically satisfies the homogeneity property.

Definition 5. We call the construction given by (10) the canonical construction, of F#
s

from the Fs(j) , or the canonical lifting of the Fs(j) to F#
s .

One particular case of the canonical construction is to form F#
s entirely from F(1).

Regarding this, we have:

Theorem 2. Let F be a family of mixed-logarithmic homogeneous one-particle operators
with the same logarithmic indices p and q. Then the family of operators F# = (F#

s )
indexed by species labels, defined for s = (s1, . . . , sN ) by

F#
s (φ) =

∑
j

F
(j)
(sj)

(φ)− (N − 1)(p ln |φ|+ iq arg φ)φ ,

is a tensor derivation satisfying the permutation property.

Proof: The permutation property is obvious from the construction. Consider the left-
hand side of (6), and let φ = φ1 · · ·φr. We have:

Fs(j)(φj)
φj

=

∑
k
F

(k)
(sk)(φj)− (nj − 1)(p ln |φj |+ iq arg φj)φj

φj
.

The right-hand side can be rewritten,∑
k
φ̂jF

(k)
(sk)(φj)− (nj − 1)(p ln |φj |+ iq arg φj)φ

φ
.

Using the homogeneity property for the operators in F , the numerator of this expression
becomes∑

k

F
(k)
(sk)(φ)− nj(p ln |φ̂j |+ iq arg φ̂j)φ̂jφj − (nj − 1)(p ln |φj |+ iq arg φj)φ ,
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where the sum over k is still restricted to the variables of φj . Noting that ln |φ̂j |+ln |φj | =
ln |φ|, and arg φ̂j +arg φj = arg φ, the sum over j of the last-displayed expression is exactly
F#

s (φ), Q.E.D.
We now consider the question of uniqueness. We note that the set of tensor derivations

is a linear space under component-wise operations (disregarding domain questions; for this
statement to be strictly true, we must fix a domain). The logarithmic indices are linear
functionals on this space. Given any derivation F , one can form the derivation F−(F[1])#,
for which all the one-particle operators are zero.

Definition 6. We call the threshold of a tensor derivation F the largest integer c such
that for N < c, all the N -particle operators are zero.

Suppose that a derivation F has threshold ` > 1. Since all operators in F[1] vanish,
the logarithmic indices must be 0. By (5) all the operators in F[`] must vanish on all
product functions. Starting with F[`], we can use a canonical procedure to construct
higher-particle-number operators, in a manner we next describe.

Let F now be just a family, satisfying the permutation property, of strictly homoge-
neous `-particle operators that vanish on product functions. Let N ≥ `, and let s be a
species index with N elements. For each `-tuple J = (j1, . . . , j`) of elements of {1, . . . , N}
in increasing order, let sJ be the `-order species label (sj1 , . . . , sj`

).

Theorem 3. In the notation of the previous paragraph, let the family of operators F# =
(F#

s ), indexed by species labels, be defined for s = (s1, . . . , sN ), N ≥ `, by

F#
s =

∑
J

F J
sJ
, (11)

and with N < `, by F#
s = 0. Then F# is a tensor derivation satisfying the permutation

property.

Proof: The permutation property is again evident from the construction. Consider once
more the left-hand side of (6). As before, let Jj be the nj-tuple of successive integers from
n1 + n2 + · · ·+ nj−1 + 1 to n1 + n2 + · · ·+ nj . We have by strict homogeneity

F#

s(j)(φj)
φj

=
∑

K φ̂jF
K
sK

(φj)
φ

=
∑

K FK
sK

(φ)
φ

,

where K ranges over all the `-tuples of members in increasing order of Jj . Now for any
`-tuple J in (11) that is not comprised the members of one of the Jj , one has F J

sJ
(φ) = 0

since the operators in F vanish on product functions. Thus the sum of these over all j is
just F#

s (φ)/φ, Q.E.D.

Definition 7. We call the construction given by (11) the canonical construction of F#
s

from F , or the canonical lifting of F to the F#
s .

For a derivation F of the threshold `, the derivation F − (F[`])# now has a threshold
greater than `. Thus we can iterate the canonical construction.

Definition 8. Let F be a tensor derivation. Define derivations djF as follows: for j = 1,

d1F = (F[1])
# ;
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having defined (up to j = r) d1F, . . . , drF , let

dr+1F = ((F −
r∑

j=1

djF )[r+1])
#.

We call this the canonical decomposition of F , and we call the operators in (djF )[j] the
canonical generators at the threshold j of F .

Theorem 4. For any tensor derivation F , one has F =
∞∑

j=1
djF . The dj are real-linear

idempotents, and if djF is not zero, its threshold is j. Conversely, suppose for each j we are
given a set of j-particle operators Fj satisfying the permutation property and the following
two conditions: (a) the operators in F1 are mixed-logarithmic homogeneous, having all the
same logarithmic indices; and (b) for j > 1, the operators in Fj are strictly homogeneous

and vanish on product functions. Then the derivation F =
∞∑

j=1
(Fj)# satisfies djF = (Fj)#,

and its set of canonical generators at the threshold j is precisely Fj. Furthermore, F
satisfies the permutation property.

Taking into account the construction and the earlier theorems, the proof is a series
of straightforward verifications. This theorem provides an effective and easy way of con-
structing tensor derivations starting with the canonical generators. These are subject
only to the permutation property, and conditions (a) and (b) above. The generators at
the threshold ` represent truly new effects that come into being with ` particles, and are
absent for any smaller number of particles.

4 Conservation of Probability

If we are to interpret the wave-function solutions as probability amplitudes, then initial
data of norm 1 must continue to have norm 1 under evolution. This is true if the evolution
is norm-preserving in general, and it is this property that we examine. Most examples
in the literature obey this condition. If ψ(t) evolves according to the equation ih̄∂tψ =
Fs(ψ), and if this evolution is norm preserving, then from ∂t(ψ(t), ψ(t)) = 0 we deduce
that (ψ(t), Fs(ψ(t)) − (Fs(ψ(t)), ψ(t)) = 2i Im (ψ(t), Fs(ψ(t)) = 0. Any linear hermitian
operator satisfies this.

Definition 9. An operator F is norm-hermitian , if Im (φ, F (φ)) = 0 for all φ. Note that
norm-hermiticity is a linear condition on the operator. We say that a family of operators
F indexed by species labels is norm-hermitian, if each Fs is norm-hermitian.

Theorem 5. If F is a norm-hermitian operator, then the evolution defined by ih̄∂tψ =
F (ψ) is norm-preserving.

As before, the converse depends on existence and uniqueness theorems for the initial-
value problem.

Now let F be a mixed-logarithmic homogeneous, norm-hermitian operator. Then we
have

0 = Im (kφ, F (kφ)) = |k|2 Im (φ, F (φ)) + |k|2||φ||2 Im (p ln |k|+ iq arg k) ,
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for all φ and k. But the first term after the second equality vanishes, since F is norm-
hermitian. Thus we deduce that p must be real, and q pure imaginary. Moreover, if p
is real and q is pure imaginary, then the operator Λ given by Λ(φ) = (p lnφ + iq arg φ)φ
is norm-hermitian. Suppose that G is a norm-hermitian `-particle operator and let GJ

be its lifting to an m-particle operator for some m ≥ ` and `-tuple J . Then it is easy
to see that GJ is also norm-hermitian, since Im (φ,GJφ) =

∫
Im (φy, G(φy)) dy ; where

y stands for the variables not indexed by J , and φy is φ considered as a function of `
variables parametrized by the m − ` variables y. Taking the remarks of this paragraph
into account, we see that all the canonical constructions we previously introduced preserve
norm-hermiticity. Hence we have:

Theorem 6. A tensor derivation F is norm-hermitian if and only if its canonical genera-
tors are norm-hermitian. In particular, this entails that the first logarithmic index is real
and the second pure imaginary.

This result means it is very easy to build up hierarchies of a norm-preserving evolution
equation satisfying the separation property, in which truly new effects can appear as
the number of particles increases. All one need do is to introduce a homogeneous norm-
hermitian operator that vanishes on product functions, and to take this as a new canonical
generator. This can be done even if the theory up to a given number of particles is linear;
so in particular, the usual linear theories may be modified to include nonlinear effects,
appearing for the first time at any particle number level, without compromising norm
preservation or the separation property.

5 Examples

To get an idea of the sorts of operators that vanish identically on product functions, let
us consider nonlinear differential operators of the second order not depending explicitly
on the position or time coordinates, in the case N = 2. Such an operator has the form

H
(
φ,
∂φ

∂xi
,
∂φ

∂yj
,
∂2φ

∂xi∂xj
,
∂2φ

∂xi∂yj
,
∂2φ

∂yi∂yj

)
.

Introducing variable names for the arguments of H, we write H(a, bi, cj , dij , eij , fij). When
φ is constrained to be a product φ(x, y) = α(x)β(y), then the arguments of H are
constrained to take on values of the form (α0β0, αiβ0, α0βj , αijβ0, αiβj , α0βij), where
α0, β0, αi, βj , αij , βij can be given arbitrary complex values. This defines a parametrized
complex algebraic variety. We must now find the generators of the ideal of complex-valued
polynomials in the variables and their complex conjugates that vanish on this variety. Since
the αij and βij appear each in only one component of the parameterization, generators can
be chosen that do not depend on the corresponding components dij and fij . If we define
e00 = a, e0j = cj , ei0 = bi, and let the upper case indices I, J,K,L range over 0, 1, . . . , d,
then the parameterization of our variety is given by eIJ = αIβJ . This is equivalent to
saying that eIJ is a rank one or zero matrix. By standard results about determinantal
ideals [15], the ideal of polynomials over the complex numbers vanishing on the variety of
such matrices is generated by the order-two minors MIJKL = eIJeKL − eILeKJ , which in
the form of the original indices are the polynomials aeij − bicj , ciejk − ckeji, biejk − bjeik,
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eijekl − eilekj . These and their complex conjugates then generate an ideal of complex-
valued polynomials which vanish on the underlying real variety.

To form a complex-valued C∞ function Q vanishing on this variety, one can put
Q =

∑
IJKLAIJKLMIJKL +

∑
IJKLBIJKLMIJKL for some C∞ coefficients A, B. If we

do not admit second derivatives, then it is easy to see that for a 6= 0, any (a, bi, cj) can be
written as (α0β0, αiβ0, α0βj); so assuming H is continuous, there is no first-order differ-
ential operator that vanishes identically on product functions. But there are many such
second-order operators. One particularly simple, rotation-invariant example corresponds
to the polynomial Tr(aeij − bicj) and is given by

φ∇(1) · ∇(2)φ−∇(1)φ · ∇(2)φ.

We should remark that in general, one would not expect any nontrivial linear operators
to vanish on product functions. This is because one usually seeks operators that are
continuous in some space of test functions; and in such a space, sums of product functions
generally form a dense subspace. Linear operators vanishing on product functions would
then vanish identically. As the above example shows, such obstructions do not pertain to
nonlinear operators.

For examples of norm-hermitian generators at the threshold 2, let

M(φ) =
φ∇(1) · ∇(2)φ−∇(1)φ · ∇(2)φ

φ2
, (12)

and take any operator of the form (k1 ReM(φ)+k2 ImM(φ))φ for real k1, k2. These oper-
ators are similar in appearance to terms in one-particle operators introduced by Doebner
and Goldin [3] for Galileian-invariant theories.

The equations of Doebner and Goldin have the form

ih̄∂tψ = −(h̄2/2m)∇2ψ + iDh̄

[
1
2
∇2(ψ̄ψ)
ψ̄ψ

]
ψ +R(ψ)ψ ,

where D is a real physical constant, and

R(ψ) = h̄D

{
λ1 Re

∇2ψ

ψ
+ λ2 Im

∇2ψ

ψ
+ λ3 Re

(∇ψ)2

ψ2
+ λ4 Im

(∇ψ)2

ψ2
+ λ5 Im

|∇ψ|2

|ψ|2

}
.

The corresponding equations are Galileian invariant if λ2 + λ4 = 0 and λ1 + λ3 = λ5.
By this is meant that if ψ(t, x) is a solution, then so is ψ̂(t, x) = e−iθ(t,x)ψ(t, x + vt)
where θ(t, x) = 1

h̄

(
1
2mv

2t+mvx
)
. It is easily checked that the corresponding canonically-

constructed N -particle equations continue to be Galileian invariant, using the transforma-
tion ψ(t, x1, . . . , xN ) 7→ e−i(θ1(t,x1)+···+θN (t,xN ))ψ(t, x1 + vt, . . . , xN + vt).

Furthermore addition of two-particle canonical generators that take the form

(k1 ReM(ψ) + k2 ImM(ψ))ψ,

where M is given by (12), does not spoil the invariance of the N -particle equations under
the same transformation. Thus we can maintain in a complete hierarchy of multi-particle
equations the Galileian invariance, the separation property, and norm-preservation, while
introducing truly new physical effects at the two-particle threshold.
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The question of Galileian invariance for nonlinear one-particle Schrödinger equations
was investigated by Fushchych and Cherniha [16–18], which found a class of equations and
some of their exact solutions. The general problem of symmetries of evolutions obeying
the separation property will be taken up in a forthcoming paper by one of the authors
(Svetlichny).
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