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Abstract

A general structure of commutator representations for the hierarchy of nonlinear evo-
lution equations (NLEEs) is proposed. As two concrete examples, the Harry-Dym and

Kaup-Newell cases are discused.

Recently, the commutator representations of the hierarchy of nonlinear evolution integrable
equations (NLEEs) and the related Lax operator algebra properties have been intensively
discussed [1-6]. It is well-known for the spectral problem Li) = L(u)y = M\ (u =
(uq,...,un)?’ is a potential vector, A is a constant parameter) that if its hierarchy of
evolution equations possesses commutator representations, then its key lies in solving an

operator equations of the differential operator V =V (G) [1, 3, 5]

IV, L] = L. (KG) — L. (JG) L

(1)

where K,J are the pair of Lenard’s operators corresponding to the spectral problem

L) =M, G=(GW,...,GMNT is an arbitrary given vector function,

d
Lo(©)= oo L(u+ <),

Now, consider the spectral problem

%ZU(%/\NJ

(2)

where 1 = (31, ...,%,)T, each element of the n x n matrix U (u,\) is the polynomial of

A, A1 and the coefficients of its every term depend on w.
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According to the methods proposed in ref. [7, 8], we can always acquire the spectral
gradient V, A = (6\/0uy,...,0\/dun)T of the spectral parameter A with respect to the
potential vector u. Generally, V, A is related to A, u, and the special function . The
integro-differential operators K = K (u), J = J (u) depending on the potential vector an
satisfying the following linear relation

KV A=)\ - JV,\ (0 is a fixed constant) (3)

are called the pair of Lenard’s operators of (2). The operators K, .J can be obtained with
(2) and the concrete expression of V,, A after some delicate calculations.
As U (u, M) is linear on A, (2) can always lead to

Ly =1L(u)p =\, (4)

Otherwise, (2) can’t read the form like (4). Nevertheless, because each element of the
n x n matrix U (u, \) is the polynomial in A, A~! and the coefficients of its every term
depend on u, the spectral problem (2) can be usually rewritten as

Lip=L(u,A)p =N ()

where ~ is the highest order of A in U (u, A), L = L (u, \) is a differential operator related
to u and A. A basic problem is: what is conditions under which the isospectral hierarchy
of evolution equations (5) posesses the commutator representations?

For the spectral problem of its form like (5), here we construct a wider operator
equation with the differential operator V' =V (G) than (1)

V,L] = L.(KG)L’ — L, (JG) L* (6)
where [-, ] stands for the commutator; L = L (u,\); K, J are the pair of Lenard’s
operators determined by (3); G = (G, .-, GONT is an arbitrary given vector function,

A d
L*(E): ’g:OL(u+€§7A)7 é-: (517"'7€N)T;

de
a, B are two fixed constants associated with (5) and 8 < a.

Let n = a — 3, choose G_,, € Ker J = {G|JG = 0}, and define Lenard’s recursive
secuence {Gn}:

KG(jfl)n = JGj??’ j - O, ]., 2, ee . (7)

The NLEEs w; = X,, () (m = 0,1,2,...) produced by the vector field XméJGmT,
(m=0,1,2,...) and called the hierarchy of evolution equations (5).

The following two theorems give a simple and clear approach that the hierarchy of
isospectral evolution equations u; = X, (u) (m =0,1,2,...) of (5) owns the commutator
representations.

Theorem 1 Let {Gj,}32 1 be the Lenard’s recursive sequence of (5). For any Gy, the

operator equation (6) has the commutator solution V; = V (Gjy,). Then the operator
m .

Wi =Y Vj,lL(m_])"_ﬁ is the Lax operator (4) of the vector field X, (u), that is, Wy,
7=0

satisfies

Wi, L] = L(Xpm), m=0,1,2,.... (8)
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Proof.

[Vi_1, L] L(m=5)n-p

3

[Wma L} =

<
Il
=)

) L(m*jﬂ)n)

Il
3

(Lu(KGjoayy) L = Lo (TG

I
=T
(=)
<
Q
s
i/

= L.(Xn).

From this theorem, we can also further discuss the Lax operator algebra generated by
the Lax operator W,,, which is left to a later paper.

Theorem 2 Let the conditions in Theorem 1 be satisfied, and the Gateaux derivative
mapping L.: & — L.(§) of the spectral operator L in the direction & is an injective ho-
momorphism. Then the isospectral hierarchy of evolution equations uy = Xy, (u) of (5)
possesses the commutator representations

Li=[Wpn,Ll, m=0,1,2,... 9)
Proof. Ly = Ly (uy),
Ly — Wi, L] = Li(ug) — Ly (X (w)) = Li(ug — X (u)).

The above equality implies Theorem 2 holds because L, is injective.

By Theorem 1 and Theorem 2, we can evidently see that in order to secure the com-
mutator representations (9) of NLEEs u; = X,,,(u), its key lies in constructing the cor-
responding operator equation (6) according to the form of (5) and finding an operator
solution of (6).

)T

Corollary The potential u = (ug,...,un)" satisfies a stationary nonlinear equation

1 1
> apXi-r — 0 if and only if [ > apWi_k, L] = 0, where o, (k =0,1,2,...,1) are some
k=0 k=0

constants, [ € ZT.

In the following, as two concrete examples of the above approach, we shall discuss the
Harry-Dym and Kaup-Newell hierarchies, present the corresponding operator equation
(6), solve it, and finally give the commutator representations of these two hierarchies.

1. Consider the spectral problem

—ix (u—1)A U1
Yy = U (u, \) 1), U(u,)\):( ) ¢:( ) i2=—-1.  (10)
Y i o

(10) is equivalent to the famous Sturm-Liouville equation
~0%y = puy, (11)

via the transformations ¢ = iy — A "ly,, 9 =y, p = A2, The isospectral property of the
Harry-Dym hierarchy was studided in [9], and the nonlinearization of the Lax pair for the
Harry-Dym equation u; = (u=(1/?)),,, was discussed in [10]. In the present paper, using
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the above skeleton, we further give the commutator representations of each equation in
the Harry-Dym hierarchy including the Harry-Dym equation u; = (u*(l/ 2))xm.
The spectral gradient V, A of (10) with regard to w is

Vud = M3 ( / (2i1bg — w2 — b2) dx)*l. (12)
Q

Noticing the relation 0~ 1ud? = 2itp11hs + 13 — ¢? and (9), only choosing Lenard’s ope-
rators

K= J=-2(0u+ud), (13)
we have
KV A=)\ - IV, (14)

Let G_o = u~(1/2 ¢ KerJ, define the Lenard recursive sequence {Ga;} of (10):

KGyj—1y = JGoj, j = 0,1,2,.... The Harry-Dym vector fields X (u) éJng yield the
isospectral hierarchy of NLEEs (10): u; = X;(u) (j =0,1,2,...), in which the first system

is the well-known Harry-Dym equation u; = KG_y = (u~(1/2 -
(10) can be rewritten as
1 1 1—u
L=y, L=Lu== 9, 9=20/0x. (15)
1 —1

The Gateaux derivative mapping L, of L in the direction & is

—1 —1 0 —1
L) =5 ( )azi ( )L (16)
—1 7 0 —1

and L, is an injective homomorphism.
Let G (x) be an arbitrary smooth function. For the spectral problem (15), we establish
the corresponding operator equation of V' =V (G) as follows

[V, L]=L.(KG)L™" — L. (JG) L (17)

which is equivalent to (6) with a =1, = —1.

Theorem 3 The operator equation (17) has the operator solution

0 1 1 —2i i 1—u
V=V(G) = Gy ( )+Gw ( )L+(—2G) ( )LQ. (18)
0 0 0 -1 1 —i

Proof. Let

- u—1 0 1
W = y ‘/E):Gxx )
-1 1 0 0
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1 =23 1 1—u
VFGI( ) VQZQG( ) 19
0 -1 1 —i

Then the commutator [V, L] of V. =V + ViL + VoL? and L is (L = W~19):

V,L] = W Wop + (Vo — WIVeW — WV, L+
(Vi =W IViW — W Wa,) L? + (Vo — W HVaW) L3, (20)

Substituting every expressions of (19) into (20), through lengthy calculations we can find
that the right-hand side of (20) is equal to Ly(KG)L~! — L, (JG) L.

Thus, the conditions of both Theorem 1 and Theorem 2 hold. So, the Harry-Dym
hierarchy of NLEEs u; = Xy, (u) (m = 0,1,2,...) possesses the following commutator
representations

L= [Wn, L], m=0,1,2,..,

i 0 1 1 —2i
Wp = Z {GQ(jl),a:x (0 O) + Go(j—1) 2 (0 1 ) L—

j=0
1 1—u s
2G2(j71) (1 W ) L2} L2(m ])Jrl.

Particularly, as m = 0, the Harry-Dym equation u; = X (u) = (u)zz, has the com-
mutator representation

L, = Wy, L],
0 1
‘/‘/ — 7(1/2)
0 (u ):mc(o 0) L+
1 -2 1 1—u
—(1/2) 2 _ 9,,—(1/2) 3
(u )x(o _1>L 2u (1 _Z,>L.

2. Consider the spectral problem proposed by Kaup and Newell [11]

—iX2 Au 1
Ve = U (u,v,\) 9, U(u,v,)\):( ) ¢:( ) i2 = —1. (21)
v iGN )2

It isn’t difficult to get the spectral gradient V, ,)A

S\ / Su A3 -1
e () () (Jot i) o

X/ Sv A ¥?) \4

which satisfies

KV (A =2 IV () A, (23)
where
% Oud~1uo % i0% + % Oud~1vd 0 0
K= , J =
—% i0? + % 0~ ud % o~ twod 0 0
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are the pair of Lenard’s operators of (21).
Let G_1 = (1,007 € KerJ, Gy = J'KG_1 = (v,u)T. The Lenard recursive
sequences G; (j =0,1,2,...) are determined by

KGj-1=JG;, j=0,1,2,.., (24)

which produces the Kaup-Newell hierarchy of NLEEs
(0, 0)T = X;(u,0) 2 TG, j=0,1,2, ..., (25)

with the representative equation

1. 1 1. 1 T
(u,v)] = X1(u,v) = (5 Uy + 3 (), —5 Wae + 5 (vQU)I) . (26)

As j =1 and v = u*, (26) reduces to the famous derivative Schrédinger equation (DSE):

1. 1
U = izum+§(u|u|2)x (27)

(21) is equivalent to

10 —iAu
Ly =Xy, L= : (28)
IAV —i0
The Gateaux derivative L, of L is
0 —i&
L.(&) = LV2 ve=(&,6)T, L. is injective. (29)
i€ 0
Let G (x) é(G(l)($), G®(z))” be any given smooth vector field. For the spectral
problem (28), we construct the related operator equation with V' =V (G) as follows
[V,L] = L. (KG) L™ — L,(JG) L'/? (30)
1

which is exactly (6) with o = 5 8= —5

Theorem 4 The operator equation (30) possesses the operator solution

0 % iGgf) —i—% ud~! (uGg) —i—ngf))
V=V(G)= +
—1 ey +1 v@‘l(uGg) +UG§;2)) 0
—Lig Y (wGt + vG?) 0
LV/2, (31)
0 Lio Y (wGs + 0GP

Proof. The method of prooving this Theorem is similar to that used in Theorem 3. The
process is omitted.
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So, the Kaup-Newell hierarchy of NLEEs (u,v)! = X,,(u,v) (m =0,1,2,...) has the
commutator representations

Lt: [Wva]a m:071’2""’
Wy = 3" 0 LGP+ bud G, oG )
m = "
T
e e e ) 0
3 ( j—lx jfl,x) 2\ pm—j+(1/2)
0 %’if)_1(7l(;§{lhx + U(;§?21,x)

Especially, if one lets m = 1, v = u*, then the DSE (27) has the commutator
representation

Lt = [Wla L]7
0 iy + uul? —ilu? 0
Wi =3 L4 L+
—iu 4 u* u|? 0 0 i Jul?
0 U —1 0
L3/% 4 L2
u* 0 0 1
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