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Abstract

A general structure of commutator representations for the hierarchy of nonlinear evo-
lution equations (NLEEs) is proposed. As two concrete examples, the Harry-Dym and
Kaup-Newell cases are discused.

Recently, the commutator representations of the hierarchy of nonlinear evolution integrable
equations (NLEEs) and the related Lax operator algebra properties have been intensively
discussed [1–6]. It is well-known for the spectral problem Lψ ≡ L (u)ψ = λψ (u =
(u1, ..., uN )T is a potential vector, λ is a constant parameter) that if its hierarchy of
evolution equations possesses commutator representations, then its key lies in solving an
operator equations of the differential operator V = V (G) [1, 3, 5]

[V, L] = L∗ (KG)− L∗ (JG)L (1)

where K,J are the pair of Lenard’s operators corresponding to the spectral problem
L (u)ψ = λψ, G = (G(1), ..., G(N))T is an arbitrary given vector function,

L∗ (ξ)
4
=

d

dε
|ε=0 L (u+ εξ).

Now, consider the spectral problem

ψx = U (u, λ)ψ (2)

where ψ = (ψ1, ..., ψn)T , each element of the n × n matrix U (u, λ) is the polynomial of
λ, λ−1 and the coefficients of its every term depend on u.
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According to the methods proposed in ref. [7, 8], we can always acquire the spectral
gradient ∇uλ = (δλ/δu1, ..., δλ/δuN )T of the spectral parameter λ with respect to the
potential vector u. Generally, ∇uλ is related to λ, u, and the special function ψ. The
integro-differential operators K = K (u), J = J (u) depending on the potential vector an
satisfying the following linear relation

K∇uλ = λθ · J∇uλ (θ is a fixed constant) (3)

are called the pair of Lenard’s operators of (2). The operators K,J can be obtained with
(2) and the concrete expression of ∇u λ after some delicate calculations.

As U (u, λ) is linear on λ, (2) can always lead to

Lψ ≡ L (u)ψ = λψ. (4)

Otherwise, (2) can’t read the form like (4). Nevertheless, because each element of the
n × n matrix U (u, λ) is the polynomial in λ, λ−1 and the coefficients of its every term
depend on u, the spectral problem (2) can be usually rewritten as

Lψ ≡ L (u, λ)ψ = λγ ψ (5)

where γ is the highest order of λ in U (u, λ), L = L (u, λ) is a differential operator related
to u and λ. A basic problem is: what is conditions under which the isospectral hierarchy
of evolution equations (5) posesses the commutator representations?

For the spectral problem of its form like (5), here we construct a wider operator
equation with the differential operator V = V (G) than (1)

[V,L] = L∗ (KG)Lβ − L∗ (JG)Lα (6)

where [ · , ·] stands for the commutator; L = L (u, λ); K, J are the pair of Lenard’s
operators determined by (3); G = (G(1), · · · , G(N))T is an arbitrary given vector function,

L∗(ξ)
4
=
d

dε
|ε=0 L (u+ εξ, λ), ξ = (ξ1, ..., ξN )T ;

α, β are two fixed constants associated with (5) and β < α.
Let η = α − β, choose G−η ∈ Ker J = {G |JG = 0}, and define Lenard’s recursive

secuence {Gjη}:

KG(j−1)η = JGjη, j = 0, 1, 2, ... . (7)

The NLEEs ut = Xm (u) (m = 0, 1, 2, ...) produced by the vector field Xm
4
=JGmη

(m = 0, 1, 2, ...) and called the hierarchy of evolution equations (5).
The following two theorems give a simple and clear approach that the hierarchy of

isospectral evolution equations ut = Xm (u) (m = 0, 1, 2, ...) of (5) owns the commutator
representations.

Theorem 1 Let {Gjη}∞j=−1 be the Lenard’s recursive sequence of (5). For any Gjη, the
operator equation (6) has the commutator solution Vj = V (Gjη). Then the operator

Wm =
m∑

j=0
Vj−1L

(m−j)η−β is the Lax operator (4) of the vector field Xm(u), that is, Wm

satisfies

[Wm, L] = L∗(Xm), m = 0, 1, 2, ... . (8)
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Proof.

[Wm, L] =
m∑

j=0
[Vj−1, L]L(m−j)η−β

=
m∑

j=0
(L∗(KG(j−1)η)L(m−j)η − L∗(JG(j−1)η)L(m−j+1)η)

= L∗(JGmη)

= L∗(Xm).

From this theorem, we can also further discuss the Lax operator algebra generated by
the Lax operator Wm which is left to a later paper.

Theorem 2 Let the conditions in Theorem 1 be satisfied, and the Gateaux derivative
mapping L∗: ξ → L∗(ξ) of the spectral operator L in the direction ξ is an injective ho-
momorphism. Then the isospectral hierarchy of evolution equations ut = Xm (u) of (5)
possesses the commutator representations

Lt = [Wm, L], m = 0, 1, 2, ... . (9)

Proof. Lt = L∗(ut),

Lt − [Wm, L] = L∗(ut)− L∗ (Xm(u)) = L∗(ut −Xm(u)).

The above equality implies Theorem 2 holds because L∗ is injective.
By Theorem 1 and Theorem 2, we can evidently see that in order to secure the com-

mutator representations (9) of NLEEs ut = Xm(u), its key lies in constructing the cor-
responding operator equation (6) according to the form of (5) and finding an operator
solution of (6).

Corollary The potential u = (u1, ..., uN )T satisfies a stationary nonlinear equation
1∑

k=0
αkX1−k − 0 if and only if [

1∑
k=0

αkW1−k, L] = 0, where αk (k = 0, 1, 2, ..., l) are some

constants, l ∈ Z+.
In the following, as two concrete examples of the above approach, we shall discuss the

Harry-Dym and Kaup-Newell hierarchies, present the corresponding operator equation
(6), solve it, and finally give the commutator representations of these two hierarchies.

1. Consider the spectral problem

ψx = U (u, λ)ψ, U (u, λ) =

−iλ (u− 1)λ

−λ iλ

 , ψ =

ψ1

ψ2

 , i2 = −1. (10)

(10) is equivalent to the famous Sturm-Liouville equation

−∂2y = µuy, (11)

via the transformations ψ = iy−λ−1yx, ψ2 = y, µ = λ2. The isospectral property of the
Harry-Dym hierarchy was studided in [9], and the nonlinearization of the Lax pair for the
Harry-Dym equation ut = (u−(1/2))xxx was discussed in [10]. In the present paper, using
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the above skeleton, we further give the commutator representations of each equation in
the Harry-Dym hierarchy including the Harry-Dym equation ut = (u−(1/2))xxx.

The spectral gradient ∇uλ of (10) with regard to u is

∇uλ = λψ2
2

(∫
Ω

(2iψ1ψ2 − uψ2
2 − ψ2

1) dx
)−1

. (12)

Noticing the relation ∂−1u∂ψ2
2 = 2iψ1ψ2 + ψ2

2 − ψ2
1 and (9), only choosing Lenard’s ope-

rators

K = ∂3, J = −2 (∂u+ u∂), (13)

we have

K∇uλ = λ2 · J∇uλ. (14)

Let G−2 = u−(1/2) ∈ Ker J , define the Lenard recursive sequence {G2j} of (10):

KG2(j−1) = JG2j , j = 0, 1, 2, ... . The Harry-Dym vector fields Xj (u)
4
=JG2j yield the

isospectral hierarchy of NLEEs (10): ut = Xj(u) (j = 0, 1, 2, ...), in which the first system
is the well-known Harry-Dym equation ut = KG−2 = (u−(1/2))xxx.

(10) can be rewritten as

Lψ = λψ, L = L (u) =
1
u

 i 1− u

1 −i

 ∂, ∂ = ∂/∂x. (15)

The Gateaux derivative mapping L∗ of L in the direction ξ is

L∗(ξ) =
ξ

u2

 −i −1

−1 i

 ∂ =
ξ

u

 0 −i

0 −1

 L (16)

and L∗ is an injective homomorphism.
Let G (x) be an arbitrary smooth function. For the spectral problem (15), we establish

the corresponding operator equation of V = V (G) as follows

[V, L ] = L∗ (KG)L−1 − L∗ (JG)L (17)

which is equivalent to (6) with α = 1, β = −1.

Theorem 3 The operator equation (17) has the operator solution

V = V (G) = Gxx

 0 1

0 0

 +Gx

 1 −2i

0 −1

 L+ (−2G)

 i 1− u

1 −i

 L2. (18)

Proof. Let

W =

 −i u− 1

−1 i

 , V0 = Gxx

 0 1

0 0

 ,
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V1 = Gx

 1 −2i

0 −1

 , V2 = −2G

 i 1− u

1 −i

 . (19)

Then the commutator [V,L] of V = V0 + V1L+ V2L
2 and L is (L = W−1∂):

[V,L] = −W−1V0x + (V0 −W−1V0W −W−1V1x)L+

(V1 −W−1V1W −W−1V2x)L2 + (V2 −W−1V2W )L3. (20)

Substituting every expressions of (19) into (20), through lengthy calculations we can find
that the right-hand side of (20) is equal to L∗(KG)L−1 − L∗ (JG)L.

Thus, the conditions of both Theorem 1 and Theorem 2 hold. So, the Harry-Dym
hierarchy of NLEEs ut = Xm(u) (m = 0, 1, 2, ...) possesses the following commutator
representations

Lt = [Wm, L], m = 0, 1, 2, ...,

Wm =
m∑

j=0

{
G2(j−1),xx

(
0 1
0 0

)
+G2(j−1),x

(
1 −2i
0 −1

)
L−

2G2(j−1)

(
i 1− u
1 −i

)
L2

}
L2(m−j)+1.

Particularly, as m = 0, the Harry-Dym equation ut = X0 (u) = (u)xxx has the com-
mutator representation

Lt = [W0, L],

W0 = (u−(1/2))xx

(
0 1
0 0

)
L+

(u−(1/2))x

(
1 −2i
0 −1

)
L2 − 2u−(1/2)

(
i 1− u
1 −i

)
L3.

2. Consider the spectral problem proposed by Kaup and Newell [11]

ψx = U (u, v, λ)ψ, U (u, v, λ) =

−iλ2 λu

λv iλ2

 , ψ =

ψ1

ψ2

 , i2 = −1. (21)

It isn’t difficult to get the spectral gradient ∇(u,v)λ

∇(u,v)λ =

 δλ / δu

δλ / δv

 =

 λ ψ2
2

−λ ψ2
1

 ∫
Ω

(vψ2
1 + 4iψ1ψ2 − uψ2

2) dx

−1

(22)

which satisfies

K∇(u,v)λ = λ2 · J∇(u,v)λ, (23)

where

K =

 1
2 ∂u∂

−1u∂ 1
2 i∂

2 + 1
2 ∂u∂

−1v∂

−1
2 i∂

2 + 1
2 ∂v∂

−1u∂ 1
2 ∂v∂

−1v∂

 , J =

 0 ∂

∂ 0


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are the pair of Lenard’s operators of (21).
Let G−1 = (1, 0)T ∈ Ker J, G0 = J−1KG−1 = (v, u)T . The Lenard recursive

sequences Gj (j = 0, 1, 2, ...) are determined by

KGj−1 = JGj , j = 0, 1, 2, ... , (24)

which produces the Kaup-Newell hierarchy of NLEEs

(u, v)T
t = Xj(u, v)

4
=JGj , j = 0, 1, 2, ... , (25)

with the representative equation

(u, v)T
t = X1(u, v) ≡

(1
2
iuxx +

1
2

(u2v)x,−
1
2
ivxx +

1
2

(v2u)x

)T
. (26)

As j = 1 and v = u∗, (26) reduces to the famous derivative Schrödinger equation (DSE):

ut =
1
2
iuxx +

1
2

(u |u |2)x. (27)

(21) is equivalent to

Lψ = λ2ψ, L =

 i∂ −iλu

iλv −i∂

 . (28)

The Gateaux derivative L∗ of L is

L∗(ξ) =

 0 −iξ1

iξ2 0

 L1/2, ∀ξ = (ξ1, ξ2)T , L∗ is injective. (29)

Let G (x)
4
=(G(1)(x), G(2)(x))T be any given smooth vector field. For the spectral

problem (28), we construct the related operator equation with V = V (G) as follows

[V,L] = L∗(KG)L−(1/2) − L∗(JG)L1/2 (30)

which is exactly (6) with α =
1
2
, β = −1

2
.

Theorem 4 The operator equation (30) possesses the operator solution

V =V (G)=

 0 1
2 iG

(2)
x + 1

2 u∂
−1(uG(1)

x +vG(2)
x )

−1
2 iG

(1)
x + 1

2 v∂
−1(uG(1)

x +vG(2)
x ) 0

+

−1
2 i∂

−1(uG(1)
x + vG

(2)
x ) 0

0 1
2 i∂

−1(uG(1)
x + vG

(2)
x )

 L1/2. (31)

Proof. The method of prooving this Theorem is similar to that used in Theorem 3. The
process is omitted.
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So, the Kaup-Newell hierarchy of NLEEs (u, v)T
t = Xm(u, v) (m = 0, 1, 2, ...) has the

commutator representations

Lt = [Wm, L], m = 0, 1, 2, ... ,

Wm =
m∑

j=0


 0 1

2 iG
(2)
j−1,x + 1

2 u∂
−1(uG(1)

j−1,x + vG
(2)
j−1,x)

−1
2 iG

(1)
j−1,x + 1

2 v∂
−1(uG(1)

j−1,x + vG
(2)
j−1,x) 0

 +

−1
2 i∂

−1(uG(1)
j−1,x + vG

(2)
j−1,x) 0

0 1
2 i∂

−1(uG(1)
j−1,x + vG

(2)
j−1,x)

 L1/2

 Lm−j+(1/2).

Especially, if one lets m = 1, v = u∗, then the DSE (27) has the commutator
representation

Lt = [W1, L],

W1 = 1
2

 0 iux + u |u|2

−iu∗x + u∗ |u|2 0

 L1/2 + 1
2

−i |u|2 0

0 i |u|2

 L+

 0 u

u∗ 0

 L3/2 +

−i 0

0 i

 L2.
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