
A XML Document Coding Schema Based on Complete

Binary Tree Traversal*

Ying Chen
1
, Liyong Wan

1, 2
, Cheng Luo

1

1
School of Information, Nanchang Institute of science & Technology, Nanchang, Jiangxi Province, China

2
Advanced Computing and System Laboratory, Zhejiang University, Hangzhou, Zhejiang Province, China

{Dragon_ymd, wanliyong, lunwenzju}@163.com

* This work is partially supported by Education commission of Jiangxi Province Grant # JXJG12-24-2 and Grant #JXJG12-24-3 .

Abstract - In order to resolve the inefficiency for XML data

query and support dynamic updates, etc. This paper has proposed a

XML document coding schema based of binary tree traversal

(BBCTT). Firstly, the XML document tree has been converted into

the binary tree of XML document. Secondly, all nodes of the binary

of XML document have been encoded with binary. According to

characteristic of XML document tree and binary tree, query of XML

document can be implemented. Experiment and analysis show that

the coding not only has characteristic of a small storage space and

relation determination of logic structure, but also can support

dynamic update.

 Index Terms - XML, Update, query, code, Binary, Binary tree

traversal.

1. Introduction

 At present, the XML has involved in various fields, and

has been widely applied in all kinds of industries. It can not

only be applied in traditional finances, securities, scientific

research institutions, medical and government departments for

process and exchange of data, but also involves some new

industries, such as e-government and e-commerce. With the

wide application of XML files, the content of research

becomes more and more abundant, which includes XML

coding, XML query, XML storage, etc, in these researches in

which the XML coding is very important, because it is basis of

determining the structural relationship of nodes, and

effectively supports structure join of XML query.

Today, the coding scheme of XML has two main kinds: the

region coding and the prefix coding. Region coding [1, 2]

method is applied according to the physical location of nodes,

which structure is made up of the [start, end], the start and end

represents respectively the start position and end position of

node. The region coding is XML coding method of being wide

application, which can not support effectively document

update. The region can relieves partially the problem of

document update with reservation code space, but it is not

flexible. The prefix coding [3, 4] uses nodes path, preserve the

path information of codes, can support document update, but it

length of code is more long, and the space of code is also more

large. The literature [5] proposed the PBiTree coding, which

proposes a structural join algorithm based on vertical and

lateral resolution. Because the algorithm based on the binary

coding is more complex and the intermediate conversion is

more numerous, it is still not prefect. The literature [6]

proposed efficient coding method, which adopt method of

recording node path, can support fast query operation, but it

needs more auxiliary information

This paper has proposed a XML document coding

schema based on complete binary tree traversal (BBCTT

coding). The BBCTT coding method encodes all nodes of the

XML document tree with binary, can preserve nodes path

information. The BBCTT can save storage space, and support

document update.

2. The Coding Method

A. The binary operation of XML document tree

The BBTT coding is based on binary tree, the encoding

process needs using the complete binary tree structure,

therefore, we can need converted the XML document tree into

the complete binary tree.

The XML document is a kind of semi-structure data,

which can be denoted by tree model, is called as XML

document tree. A XML document tree is shown in Fig.1. In

figure 1, node r is the root node of the XML document tree;

the lowest six nodes are all leaf nodes.

r

a b c

addname age addage add

110 101 110

Fig.1. XML document tree

The BBCTT coding method: Firstly, the XML document

tree has been converted into the binary tree of XML document.

Secondly, all nodes of the binary of XML document have been

encoded with binary. The binary tree of XML document can

be denoted by T’. There are some inverted steps, as follows:

1) step1: The root node of tree T’ is root node of tree T.

2) step2: For all other nodes, if it and its brother nodes

totals is no than 2, then denoted the root node’s son nodes of

tree T’ by its son node, otherwise, turns to the step3;

3) step3: Denoting ancestor node by the current node’

father node, and bringing the current node and its brother

International Conference on Advanced Information Engineering and Education Science (ICAIEES 2013)

© 2013. The authors - Published by Atlantis Press 132

nodes down the next
2

[log] 1n  level, and the empty space are

filled with virtual nodes.

4) step4:Repeated step 2 and step3,till all the nodes are

converted.

The XML document of the figure 2 is the converted

outcome of XML document tree in Fig.1.

r

a b c

addname age

add

110 101 110

addage

Fig.2.The complete binary tree of XML document tree

B. The encoding method of the BBCTT

 All nodes of the XML document are encoded by binary,

and the binary digit of each node is equal to its layer. Let

encoding of the root node to be 1, for any a node, if the coding

of its parents is x, then child node coding of node x

are 2 0 /1x  , where 0 and 1 represent respectively left child

and right child. After the XML document tree is transformed

into the binary tree, all nodes of the binary tree need to be

encoded, encoding rule should follow these two points:

1) Let current node to be root node, and its coding is 1;

2) Let the current node not to be root, and the code of the

current root node can be calculated by () 2L u fc x   ,

where fc represents the parents’ coding of node u . The value

of node u is 0 or 1, if c is left sub-tree, and the value of

node u is 0, otherwise is 1. The encoding model is named as

BBCTT coding.

For example, in Figure 2, let the node r to be the root

node, and its code is 1, node a code is 100, and the code of the

first child is the code of node b and 0, namely, the first code of

node b is 1010.

The each code of the BBCTT is a binary string, and each

binary bit preserves path branch information. The data can be

stored based on the integer of the binary bunch. BBCTT

coding is different length code, the level of node is smaller, the

length of coding is shorter, conversely, the level of node is

bottomer, and the length of coding is longer. In fact, some

nodes do not exist in the document tree, which is called as the

virtual node. These nodes can be skipped when in encoding.

There algorithm of encoding is shown in algorithm 1.

Algorithm: Encode_tree(T, code)

Input: Let T to be the root node of XML document, and

its code is 1.

Output: Coding of every code

BEGIN

Printf (code); /* Output the code of current node*/

ChildNumber=ChildNumber of T; /*Calculating

the number of children nodes*/

temp=log2ChildNumber;

if (temp! =|tempt|)

 high=temp+1; //*High represents the level of

depression*/

 else high=temp;

code=code*(2^high); //The code move the node left high

bit when the node is depressed high

level, i.e., the end of encoding should

be increased 0 of high */

for (i=1; i<=ChildNumber) // Encoding every node

c {Temp2=child[i] of T

Coding_method (Temp2, code); /*Encoding

recursively sub-nodes */

code++; //the value of code +1

}

END

The BBCTT coding can effectively support the document

update. The grand-son nodes only need be re-encoded when

inserting new node, and others coding are unchanged. For

example, if one child node is inserted below node b, only need

modify the two children node coding of node b, and others are

unchanged.

3. The Analysis of Coding Properties and Dynamic

Updates

A. The coding properties

Property 1: The binary length of each BBCTT coding is

equal to level where the node lies in document binary tree.

 Proof: It is root node when its length=1, and its coding

is 1, the binary length of 1 is 1; Let length=1, and the binary

length of L(k) is k; if length k 1  , then    L k 1 L k 2 0    

or    L k 1 L k 2 1     ,because length of L(k) is k, the

binary length of   L k 1 is k+1.

Property 2: If given a coding of node u, its coding of any

one ancestor node is front bunch of represented binary of node

u.

Proof: According to the principle of the BBCTT encoding,

the encoding of any node is obtained from the code of its

parents nodes except for the root node, i.e., the coding of the

node is the coding of its parents node add one bit: 0 or 1.

Therefore, the coding of any node coding is the front bunch of

its ancestor node.

Property3: If given a coding cu of node u, the coding of

ancestor node of its the hth level can be calculated by

formula () / 2L parent cu k h  , where
2

log 1k cu  (k represents

the binary bit number of cu).

Proof: According to property 1, binary encoding length of

the hth level is h. according to property 2, ancestor coding of

the hth level of node u is front bunch of represented binary of

cu. Therefore, ancestor coding of the hth level of node u is

before h sub-bunch of represented binary of cu.

133

Given node u and node v, let n1 to be level where node u

lies in document binary tree, let n2 to be level where node v

lies in document binary tree. The node u is ancestor of node v.

if and only if the coding of node u is equal to the front n1 bit

coding of node v. The node u is parent node of node v, if and

only if the coding of node u is the same as the front n1 bit of

coding of node v, and n2=n1+1.

B. Supporting for document dynamic updates

Let the coding of node u to be cu, the children number to

be n. if inserting sub-node v into node u, and the encoding of

the new node has three conditions, as follows:

1) Let the coding of node u to be cu, the children number

to be n. if inserting sub-node v into node u, and the encoding

of the new node has three conditions, as follows:

If when n=0, i.e., node u is leaf node, the new node v is

taken as child node of node u is inserted into the document

binary tree, the encoding of the new node v is cu× 2, the

encoding of others are unchanged.

2) If when n=1, i.e., node u is only a child node, the new

node v is taken as right-child node of node u is inserted into

the document binary tree, the encoding of the new node v is

cu× 2+1, the encoding of others are unchanged.

3) If when n=1, i.e, node u is only a child node, the new

node v is taken as left-child node of node u is inserted into the

document binary tree, the original child encoding of the node u

is cu× 2+1, the encoding of the node v is cu× 2, the encoding

of others are unchanged.

4) If when n=2, there is no space for insertion of new

node, and call algorithm Encode_tree(T, code) to re-encode

the sub-tree of node u, the encoding of others are unchanged.

5) For deleted nodes, its coding will be deleted, the

encoding of others are unchanged.

4. Experiments and Analysis

 The current coding schema have some drawbacks, for

instance, the region can not effectively support document

update, and the Prefix coding can support document update,

but it need occupy a great deal of storage space. The BBCTT

coding only need modify little node data when document is

updated, can save a large number of storage space because of

using binary storage.

1) Experiment environment. Hardware system: CPU-Intel

Pentium Dual 2.16GHz, RAM 2G; operation system:

Windows XP Professional; the development tools: JDK1.6,

Eclispe3.4.1 and Java Language.

2) Data set. This experiment takes Xmark as data set of

test. The Xmark information is shown in table 1.

TABLE 1 Xmark Information

Name
Document

Size (MB)

DTD

SIZE (MB)

Node number(ten

thousand)

average

depth

Xmark 108 5 133.81 7.38

The Xmark has some features, as follows:

(1) It is data set of deep nested structure.

(2) It is well format and meaningful data set.

(3) It requirement of memory is lower, and has nothing to

do with size of generated document.

2) The other coding. Region coding XISS[7]and prefix

coding LSDX[3]are two classic coding schema.

In experiment, we will compare the BBCTT coding with

the region coding XISS and prefix coding LSDX. The length

of three different coding is shown in Fig.3.

0

10

20

30

40

50

60

70

80

10 20 30 40 50

Xmark size(MB)

E
n
c
o
d
i
n
g

l
e
n
g
t
h
(
M
B
)

LSDX

XISS

BBCTT

Fig.3. Comparison of coding length

The experiment shows that the BBCTT coding has little

space because of using binary encoding.

Next, the experiment of document update is tested. We

generate Xmark dataset into six different documents with auto-

generation tool of XMLGen. These different documents are

respectively named as D1, D2, D3, D4, D5, and D6. The node

numbers of these documents are shown in table 2.

TABLE 2 The Number of Nodes of Different Document

D1 D2 D3 D4 D5 D6

620 10204 22403 43256 132423 263590

The secondary encoding rate of node in document tree is

shown in Fig.4.

0

10

20

30

40

50

60

70

D1 D2 D3 D4 D5 D6

Different document

r
a
t
e
(
%
)

XISS

LSDX

BBCTT

Fig.4. The secondary encoding rate

The figure 4 shows that the XISS is deficient in update

ability; the BBCTT and LSDX have effective updated ability.

For XISS, there are many nodes need to be re-encoded

when in document update, and the number of the secondary

encoding grows larger with the number of nodes; For BBCTT

and LSDX, the node number of document is larger, the

134

secondary encoding rate of node is lower, but the updated

ability of BBCTT coding is better than the LSDX coding.

3) Performance analysis.

a) The performance of storage space. The BBCTT

coding has much better properties by comparison with the

region coding of XISS and the prefix coding of LSDX. The

BBCTT coding has little space because of using binary

encoding. The XISS encode nodes using a pair of integers, and

the LSDX represents the positional relationship with letters, so

these need occupy more storage space.

b) The performance of query time. Compared with the

region coding of XISS and the prefix coding of LSDX, the

BBCTT coding has have many superiority on cost of query

time. Because the BBCTT only need scans once XML

document tree when it deals with XML document, while the

XISS and LSDX coding scan at least twice XML document

tree. Therefore from this angle, the CSBTT coding spends less

time on query XML document tree.

c) Determinations of relationship. The BBCTT coding

can effectively support determination of the relationship

among nodes, such as ancestor-grandson, father-son,

brotherhood, etc.

5. Conclusion

The BBCTT coding has encoded nodes of the document

tree with binary, and each node has a unique coding, which

occupy relatively little storage space. It not only supports

effectively dynamic update of document, but also has

characteristic of a small storage space and relation

determination of logic structure.

This is the work in the future:(1) How to decrease costs of

converting the XML document tree into the binary document

tree;(2) According to the practical application environment,

we implement query optimization combined with the relevant

indexing mechanism.

Acknowledgment

The author wishes to express thanks to corresponding

author Liyong Wan in conducting this study. The study work is

supported by Supported by Education commission of Jiangxi

Province under Grant no.JXJG12-24-2 and under Grant

no.JXJG12-24-3.

References

[1] C Zhang, et al. On Supporting Containment Queries in Relational

Database Management Systems. Proc. of SIGMOD, 2001, pp.425-436.

[2] Michael Erdmann, Rudi Studer. How to structure and access XML

documents with ontologies. Data & Knowledge Engineering, 2001(36),

pp.317-335.

[3] Wang W, Jiang HF, Lu HJ, Jeffrey XY. PBiTree coding and efficient

processing of containment joins. Dayal amamritham K, Vijayaraman

TM, eds. Proc. of the 19th Int'l Conf.on Data Engineering. Los Alamitos:

IEEE Press, 2003, pp.391-402.

[4] L Y Wan, Y Chen. A XML Document Coding Schema Based on

Binary Tree Traversal, Computer Application System, vol.

2013,22(2),pp.151-154.

[5] W Wang, H F Jiang, H J Lu. PBiTree coding and efficient processing of

containment joins. Dayal U, Ramamritham K, Vijayaraman TM, eds.

Proc. of the 19th Int'l Conf.on Data Engineering. Los Alamitos: IEEE

Press, 2003, pp.391-402.

[6] H N Wen, X F Liu, W F Li. XML coding scheme for efficient query

processing. Computer Application, vol, 30(3), 2010, pp.931-934.

[7] Cohen E, Kaplan H, Milo T. Labeling Dynamic XML Trees. Proc. of

PODS, 2002: 271-281.Press, 2003: 391-402.

135

