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Abstract

Operators of nonlocal symmetry are used to construct exact solutions of nonlinear
heat equations

In [1] the idea of constructing nonlocal symmetry of differential equations was proposed.
By using this symmetry, we have suggested a method for finding new classes of ansatzes
reducing nonlinear wave equations to systems of ordinary differential equations [2]. In the
present paper, we apply this method to the nonlinear heat equation.

I Let us consider the equation

Uy = F(uy). (1)

where F'(u;) is some smooth function.
This equation is connected with the equation

wy — (c(w)wy), = 0. (2)
In fact, the variable w = u,, satisfies eq.(2), when
c(w) = [F_l(w)}w : (3)
For convenience, we study the symmetry of eq.(1). The following system
vy + viv? = v? + vivl,

(4)

vi +vjv? = F(v'),

where t = x1, * = X2, u = I3, % = Ul,g—g = o2 vl = g—g;, corresponds to eq.(1) if
we use the approach suggested in [2]. The point symmetry of system (4) may be usefull
in looking for solutions of equation (1) using a reduction method. Thus, we seek the

invariance algebra of system (4) in the class of operators

X = glaxl + 528332 + §38:v3 + 77181)1 + 7728@27 (5)

where &1, €2, €3, n', % are functions depending on the variables z1, xq, x3 v!, v2.
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Then the following theorem can be proved with help of the Lie algorithm.

Theorem. System (4) is invariant with respect to the algebra with basis elements
Py =0y, Po=0s,, P3=0y,
D = 2210,, + 1904, + 22304, + v%0,2, (6)
Q1 = 22055 + 0,2,

QQ = —(Elaa;l + 1)28902 + Ulavl, (7)
if
1
F= alnvl’ (8)

We consider a subalgebra generated by the operators { P3, Q2}. The ansatz correspond-
ing to these operators is as follows

(9)

2 _ )
(p2(v?) —Inaq)’

Substituting (9) into (4), we obtain the system of ordinary differential equations
Inp; — g2 = 02@%
dv
(10)
dpy _ 2
dv? ’

The general solution of system (10) has the form
2
Y1 = % ((U2) +C) ’
(11)
(@4 0) + G426
2 =In 9202 +25 (v ) T C

Thus we obtain the system

2
Ut = (ux)2t+ Ca

2 (12)
1n(2)t7—2|—0 + Cl + 2\F arctan \@

Uy =

when C' > 0, and

2+ C
Ut = (Ux)2t+ )

Uy = )
2t 2 Uz + vV—C
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when C' < 0. It is necessary to integrate system (12) or (13) to construct the solution of
equation (1). But using the connection between equations (1) and (2), it is easy to obtain

the solution of equation (2) with c¢(w) = _exw% in the form
1 (9)2+C
exp v (14)
2z
o= , (15)
©r+C ., C | 2JC 0
In 972 g T g arctan JC
when C > 0, and
1 (9)2+C
exp P VIR (16)
2z
6 = , (17)
m@+C G VO 0-y=C
2te? 0 0 0+v—-C

where C' < 0, 6 is the solution of (15) or (17). Thus formulae (14) and (16) give two
families of solutions for the nonlinear heat equation (2).
IT Let us consider the equation

U — Ugy = H(u), (18)

where H(u) is some smooth function.
The following system
vt + v§v2 = v%vl,

19
v? — vlo! = H(zs), e

where u = x3, % =, % = v2, corresponds to Eq.(18) if we use the approach suggested

in [4]

Theorem 1 System (19) is Q—conditionally invariant with respect to the operator

CF22
Q = Ouy + 2F exp (—F?)0'0,1 + <2F exp (—F?)v? + XD ( l;)” 1) B2 (20)

if
H(x3) = exp (F?(x3)),
where F(x3) = @ 1(x3), ®(z3) = [exp ((;1:3)2>d:v3.
Proof. We use the criterion of ()—conditional invariance. Thus we have
Q(v? — vjv! — exp (F2(x3))) =
2F exp (—F?)v? + (exp (—F?)v? — 1) /F—
(21)
vl (2F exp (—F?)v! — 4F? exp (—2F?)v! + 2F exp (—F?)vl) —

203 F exp (—F?)v! — 2F,

where @ is the prolongation of the operator Q.
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Taking into account

v? = 2F exp (—FQ)(UI)2 + exp (F?),

v} = 2F exp (—F?)v!,

v3 = 2F exp (—F?)v? + (exp (-F?*)v? — 1) /F
we obtain

Q(v* — vjo! —exp (F2(x3))) =

2F exp (—F?) (2F exp (—FQ)(Ul)2 + exp (Fz)) +

(exp (—F?) (2F exp (—FQ)(U1)2 + exp (FQ)) — 1) JF—
vl (2exp (—2F?)v! —4F%exp (—F?)v! +4F%exp (—2F?)v!) —
4F?% exp (—2F2)(v1)2 —2F =0.
Similarly we receive
Q (vtl + viv? — v%vl) =0. (22)
Q.E.D. The operator (3) generates the ansatz

vl = exp (F?
p (F%)e1(t), (23)
v? = exp (F?)(2Fp2(t) + 1),

where @1, @2 are unknown functions.
Substitution of (6) into (2) yields the system of two ordinary differential equations for

Y1, P2
dpr/dt = 2p1¢9,

) (24)
Y2 = ¥1,
whose general solution has the form
Y1 = 1/ Vv C— 4ta
(25)
wo =1/(C — 4t).
Integrating the overdetermined but compatible system
uy = exp (F%(u))/vC — 4t,
(26)

ut = exp (F?) (2F/(C — 4t) + 1),

we get the exact solution of the nonlinear heat equation with the function H(u) =
exp (F(u))
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+62 — (mf’ + Oy
6/C — 4t ’

u=7>o (27)

where ®(z) = [exp 22dz. The maximal invariance algebra of the equation

Ut — Ugy = €XP (FQ(u)> (28)
is a 2—dimensional Lie algebra, whose basis elements are given by the formulae

Py = 0, Py = 0.

It is obvious that the solution (10) is not an invariant solution.
ITI Finally, we consider the equation

2 2 2
0°u F( 0“u 8u>7 (29)

871:(2) - 0,011’ 671'%

where F' is an arbitrary smooth function.

2 2
btain the M -A ti tting F = 97 Ou. ing th
One can obtain the Monge-Ampere equation setting ( d20 8x1> / 8:5% Using the

invariance of equation (29) under the operators 0, o0y, £10,, we write it in the form of
the following system.

ot _ ov?
Ooxr1 ~ Oz’
o _ o (30)
Oxg ~ Ox1’
vl = F(v?,03),
where 0%y 1 0%u =2 Pu = 3.

U=y =v
oxt " Jz00y " 0zt

Theorem 2 System (30) is invariant with respect to the continuous group of transforma-
tions with the infinitesimal operator

X =&, 0%, 0v3)0,, + (v, 0%, 03)0,,, (31)
if €0, €Y satisfy the system of equations

00 9¢b _ agt  agd
Jxg ~ Ox1 ~ Jxg ~ Oxp

SR+ —m—g) =0, (32)

EF =88R + P+ &,

:()7

k
where{szgga, Fazagﬁl, k=0,1; a=1,2,3.

With the help of this operator, one can construct ansatzes reducing equation (29) to
the system of three ordinary differential equations for three unknown functions.
The finite transformations

To = x9 + a{o, ] =21+ a§1 (33)
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correspond to operator (31). In the case of Lie-Bécklund symmetry, one can construct
finite transformations in a closed form for point and contact symmetries only. We note that
Pu _Pu_ Pu
Ox3’ 0x00x1’ Ox?
initial variables, we are able to construct the finite transformations (33) corresponding to
operator (31). Moreover, these transformations can be used for generating new solutions.
0%u
ox3

in terms of

although £Y and ¢! depend on the second-order derivatives

For example, we shall take F' = sin (53— ). In this case, one of the solutions of system (32)

is

€0 = %(v1)2 — Ccosv? + D,

(34)
& = Cvlsinv? + Dot
. 1:0.%2 . .
where C, D are constants. We start from solution u = =5 — sinzg of the equation (29).
Then
W = sin xg, vl = 1, v? = x.

Using transformations (33), we obtain the system

Y = sin {:po +a (%(01)2 — Ccosv? + D)},

vl =21 + a (Covlsinv? + Dovl), (35)

v =120+a {%(01)2 — C cos v? +D} .

Thus, in order to find new solutions of equations (29), it is necessary to solve the overde-
termined but compatible system

ugo = sin [mo +a (%(um)z — Ccosuil + D)},

up1 = 21 + a (Cugy sinuyy + Dugy) , (36)
_ C 2

Ul = To +a 2(u01) Ccosuir + D,

_ d%u _ 0% _ d*u
where upp = 8563,1“]1 = 8.’1‘081’17u11 = afﬂ% .
The maximal invariance group of point transformations of Eq. (29) is the 7-parameter

group. The basis elements of the corresponding algebra are
Py =0y, P1 =0y, Py=0y,
D = 200y, + 10z, + 2u0y, (37)
Qo =200y, Q1 =10y, Q2= 0710,

It can be shown that system (36) has no solutions invariant under the operator agPp +
a1 P1 + aoPy + dD + [oQo + 1@ + B2Q2, where ap, a1, a2,d, fo, b1, P2 are arbitrary
constants. Therefore, any solution of system (36) is not an invariant solution for Eq.(29).
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It seems that the existence of the infinite-dimensional invariance algebra of system (30)

allows linearization of this system by means of hodograph transformations
To = Xo (1)2,1)3) , X1 =21 (1)2,1)3)
In fact, excepting v' in (30), we obtain the system
Fio? + FByo? = o},
vg = v2.
In terms of variables given by (38), this system will be written in the form

0 0 0
Fy (v?,03) 37:5‘% — Fy (v?,0%) €49 = _(")72}6%’

O0z1 _ Oxq
ov?  ov3’

(38)

(39)

(40)

Integrating the linear system (40), one can obtain the exact solutions of Eq.(29) as well

as construct the nonlinear superposition principle for its solutions.
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