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Abstract

Operators of nonlocal symmetry are used to construct exact solutions of nonlinear
heat equations

In [1] the idea of constructing nonlocal symmetry of differential equations was proposed.
By using this symmetry, we have suggested a method for finding new classes of ansatzes
reducing nonlinear wave equations to systems of ordinary differential equations [2]. In the
present paper, we apply this method to the nonlinear heat equation.

I Let us consider the equation

uxx = F (ut). (1)

where F (ut) is some smooth function.
This equation is connected with the equation

wt − (c(w)wx)x = 0. (2)

In fact, the variable w ≡ uxx satisfies eq.(2), when

c(w) =
[
F−1(w)

]
w

. (3)

For convenience, we study the symmetry of eq.(1). The following system

v1
2 + v1

3v
2 = v2

1 + v2
3v

1,

v2
2 + v2

3v
2 = F (v1),

(4)

where t ≡ x1, x ≡ x2, u ≡ x3, ∂u
∂t = v1,∂u

∂x = v2 vi
k ≡

∂vi

∂xk
, corresponds to eq.(1) if

we use the approach suggested in [2]. The point symmetry of system (4) may be usefull
in looking for solutions of equation (1) using a reduction method. Thus, we seek the
invariance algebra of system (4) in the class of operators

X = ξ1∂x1 + ξ2∂x2 + ξ3∂x3 + η1∂v1 + η2∂v2 , (5)

where ξ1, ξ2, ξ3, η1, η2 are functions depending on the variables x1, x2, x3 v1, v2.
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Then the following theorem can be proved with help of the Lie algorithm.

Theorem. System (4) is invariant with respect to the algebra with basis elements

P1 = ∂x1 , P2 = ∂x2 , P3 = ∂x3 ,

D = 2x1∂x1 + x2∂x2 + 2x3∂x3 + v2∂v2 ,

Q1 = x2∂x3 + ∂v2 ,

(6)

Q2 = −x1∂x1 + v2∂x2 + v1∂v1 , (7)

if

F =
1

α ln v1
. (8)

We consider a subalgebra generated by the operators {P3, Q2}. The ansatz correspond-
ing to these operators is as follows

v1 = ϕ1(v2)
x1

,

v2 = x2

(ϕ2(v2)− lnx1)
.

(9)

Substituting (9) into (4), we obtain the system of ordinary differential equations

lnϕ1 − ϕ2 = v2 dϕ2

dv2 ,

dϕ1

dv2 = v2.

(10)

The general solution of system (10) has the form

ϕ1 = 1
2
(
(v2)2 + C

)
,

ϕ2 = ln ((v2)2 + C)
2e2 + C1

v2 + 2C
v2

∫ dv2

(v2)2 + C
.

(11)

Thus we obtain the system

ut = (ux)2 + C
2t ,

ux = 2x

ln (ux)2 + C
2te2 + C1

ux
+ 2

√
C

ux
arctan ux√

C

,
(12)

when C > 0, and

ut = (ux)2 + C
2t ,

ux = 2x

ln (ux)2 + C
2te2 + C1

ux
+
√
−C
ux

ln ux −
√
−C

ux +
√
−C

,
(13)
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when C < 0. It is necessary to integrate system (12) or (13) to construct the solution of
equation (1). But using the connection between equations (1) and (2), it is easy to obtain

the solution of equation (2) with c(w) = −exp 1
w

w2 in the form

exp
1
w

=
(θ)2 + C

2t
, (14)

θ =
2x

ln (θ)2 + C
2te2 + C1

θ + 2
√

C
θ arctan θ√

C

, (15)

when C > 0, and

exp
1
w

=
(θ)2 + C

2t
, (16)

θ =
2x

ln (θ)2 + C
2te2 + C1

θ +
√
−C
θ ln θ −

√
−C

θ +
√
−C

, (17)

where C < 0, θ is the solution of (15) or (17). Thus formulae (14) and (16) give two
families of solutions for the nonlinear heat equation (2).
II Let us consider the equation

ut − uxx = H(u), (18)

where H(u) is some smooth function.
The following system

v1
t + v1

3v
2 = v2

3v
1,

v2 − v1
3v

1 = H(x3),
(19)

where u ≡ x3, ∂u
∂x ≡ v1, ∂u

∂t ≡ v2, corresponds to Eq.(18) if we use the approach suggested
in [4]

Theorem 1 System (19) is Q–conditionally invariant with respect to the operator

Q = ∂x3 + 2F exp
(
−F 2

)
v1∂v1 +

(
2F exp

(
−F 2

)
v2 +

exp
(
−F 2

)
v2 − 1

F

)
∂v2 (20)

if
H(x3) = exp

(
F 2(x3)

)
,

where F (x3) = Φ−1(x3), Φ(x3) =
∫

exp
(
(x3)

2
)
dx3.

Proof. We use the criterion of Q–conditional invariance. Thus we have

Q̃(v2 − v1
3v

1 − exp
(
F 2(x3)

)
) =

2F exp
(
−F 2

)
v2 +

(
exp

(
−F 2

)
v2 − 1

)
/F−

v1
(
2F exp

(
−F 2

)
v1 − 4F 2 exp

(
−2F 2

)
v1 + 2F exp

(
−F 2

)
v1
3

)
−

2v1
3F exp

(
−F 2

)
v1 − 2F,

(21)

where Q̃ is the prolongation of the operator Q.
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Taking into account

v2 = 2F exp
(
−F 2

)
(v1)2 + exp

(
F 2
)
,

v1
3 = 2F exp

(
−F 2

)
v1,

v2
3 = 2F exp

(
−F 2

)
v2 +

(
exp

(
−F 2

)
v2 − 1

)
/F

we obtain

Q̃(v2 − v1
3v

1 − exp
(
F 2(x3)

)
) =

2F exp
(
−F 2

) (
2F exp

(
−F 2

)
(v1)2 + exp

(
F 2
))

+

(
exp

(
−F 2

) (
2F exp

(
−F 2

)
(v1)2 + exp

(
F 2
))
− 1

)
/F−

v1
(
2 exp

(
−2F 2

)
v1 − 4F 2 exp

(
−F 2

)
v1 + 4F 2 exp

(
−2F 2

)
v1
)
−

4F 2 exp
(
−2F 2

)
(v1)2 − 2F ≡ 0.

Similarly we receive

Q̃
(
v1
t + v1

3v
2 − v2

3v
1
)
≡ 0. (22)

Q.E.D. The operator (3) generates the ansatz

v1 = exp
(
F 2
)
ϕ1(t),

v2 = exp
(
F 2
)
(2Fϕ2(t) + 1),

(23)

where ϕ1, ϕ2 are unknown functions.
Substitution of (6) into (2) yields the system of two ordinary differential equations for

ϕ1, ϕ2

dϕ1/dt = 2ϕ1ϕ2,

ϕ2 = ϕ2
1,

(24)

whose general solution has the form

ϕ1 = 1/
√

C − 4t,

ϕ2 = 1/(C − 4t).
(25)

Integrating the overdetermined but compatible system

ux = exp
(
F 2(u)

)
/
√

C − 4t,

ut = exp
(
F 2
)
(2F/(C − 4t) + 1) ,

(26)

we get the exact solution of the nonlinear heat equation with the function H(u) =
exp

(
F 2(u)

)
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u = Φ

±6x−
(√

C − 4t
)3

+ C1

6
√

C − 4t

 , (27)

where Φ(z) =
∫

exp z2dz. The maximal invariance algebra of the equation

ut − uxx = exp
(
F 2(u)

)
(28)

is a 2–dimensional Lie algebra, whose basis elements are given by the formulae

Px = ∂x, Pt = ∂t.

It is obvious that the solution (10) is not an invariant solution.
III Finally, we consider the equation

∂2u

∂x2
0

= F

(
∂2u

∂xo∂x1
,

∂2u

∂x2
1

)
, (29)

where F is an arbitrary smooth function.

One can obtain the Monge-Ampere equation setting F =
(

∂2u
∂x0∂x1

)2

/∂2u
∂x2

1
. Using the

invariance of equation (29) under the operators ∂u, x0∂u, x1∂u, we write it in the form of
the following system.

∂v1

∂x1
= ∂v2

∂x0
,

∂v3

∂x0
= ∂v2

∂x1
,

v1 = F (v2, v3),

(30)

where ∂2u
∂x2

0
≡ v1, ∂2u

∂x0∂x1
≡ v2, ∂2u

∂x2
1
≡ v3.

Theorem 2 System (30) is invariant with respect to the continuous group of transforma-
tions with the infinitesimal operator

X = ξ0(v1, v2, v3)∂x0 + ξ1(v1, v2, v3)∂x1 , (31)

if ξ0, ξ1 satisfy the system of equations

∂ξ0

∂x0
= ∂ξ0

∂x1
= ∂ξ1

∂x0
= ∂ξ1

∂x1
= 0,

ξ1
1F1 + ξ1

2 − ξ0
1F2 − ξ0

3 = 0,

ξ0
2F2 = ξ0

3F1 + ξ1
1F2 + ξ1

3 ,

(32)

where ξk
a ≡

∂ξk

∂va , Fa ≡ ∂F
∂va+1 , k = 0, 1; a = 1, 2, 3.

With the help of this operator, one can construct ansatzes reducing equation (29) to
the system of three ordinary differential equations for three unknown functions.

The finite transformations

x̃0 = x0 + aξ0, x̃1 = x1 + aξ1 (33)
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correspond to operator (31). In the case of Lie-Bäcklund symmetry, one can construct
finite transformations in a closed form for point and contact symmetries only. We note that
although ξ0 and ξ1 depend on the second–order derivatives ∂2u

∂x2
0
, ∂2u

∂x0∂x1
, ∂2u

∂x2
1

in terms of

initial variables, we are able to construct the finite transformations (33) corresponding to
operator (31). Moreover, these transformations can be used for generating new solutions.

For example, we shall take F = sin (∂
2u

∂x2
1
). In this case, one of the solutions of system (32)

is

ξ0 = C
2 (v1)2 − C cos v2 + D,

ξ1 = Cv1 sin v2 + Dv1,
(34)

where C,D are constants. We start from solution u = x0x
2
1

2 − sinx0 of the equation (29).
Then

v0 = sinx0, v1 = x1, v2 = x0.

Using transformations (33), we obtain the system

v0 = sin
[
x0 + a

(
C
2 (v1)2 − C cos v2 + D

)]
,

v1 = x1 + a
(
Cv1 sin v2 + Dv1

)
,

v2 = x0 + a
[
C
2 (v1)2 − C cos v2 + D

]
.

(35)

Thus, in order to find new solutions of equations (29), it is necessary to solve the overde-
termined but compatible system

u00 = sin
[
x0 + a

(
C
2 (u01)2 − C cos u11 + D

)]
,

u01 = x1 + a (Cu01 sinu11 + Du01) ,

u11 = x0 + a
[
C
2 (u01)2 − C cos u11 + D

]
,

(36)

where u00 ≡ ∂2u
∂x2

0
, u01 ≡ ∂2u

∂x0∂x1
, u11 ≡ ∂2u

∂x2
1
.

The maximal invariance group of point transformations of Eq. (29) is the 7-parameter
group. The basis elements of the corresponding algebra are

P0 = ∂x0 , P1 = ∂x1 , P2 = ∂u,

D = x0∂x0 + x1∂x1 + 2u∂u,

Q0 = x0∂u, Q1 = x1∂u, Q2 = x0x1∂u

(37)

It can be shown that system (36) has no solutions invariant under the operator α0P0 +
α1P1 + α2P2 + dD + β0Q0 + β1Q1 + β2Q2, where α0, α1, α2, d, β0, β1, β2 are arbitrary
constants. Therefore, any solution of system (36) is not an invariant solution for Eq.(29).
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It seems that the existence of the infinite-dimensional invariance algebra of system (30)
allows linearization of this system by means of hodograph transformations

x0 = x0

(
v2, v3

)
, x1 = x1

(
v2, v3

)
(38)

In fact, excepting v1 in (30), we obtain the system

F1v
2
1 + F2v

3
1 = v1

1,

v3
0 = v2

1.
(39)

In terms of variables given by (38), this system will be written in the form

F1
(
v2, v3

) ∂x0

∂v3 − F2
(
v2, v3

) ∂x0

∂v2 = −∂x1

∂v3 ,

∂x1

∂v2 = ∂x0

∂v3 .

(40)

Integrating the linear system (40), one can obtain the exact solutions of Eq.(29) as well
as construct the nonlinear superposition principle for its solutions.
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