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 Abstract - This paper aims to improve the performance of 

partial least squares regression, and then, improve efficiency of its 

implementation. In this paper we provide a novel derivation based on 

optimization for the partial least squares (PLS) algorithm. The 

derivation shows that only one of either the X- or the Y- matrix needs 

to be deflated during the sequential process of computing latent 

factors. And then, based on this derivation, an improved recursive 

exponentially weighted PLS regression algorithm was proposed. And 

the improved algorithm is obviously superior to traditional PLS 

regression algorithm on performance. 

 Index Terms - partial least squares (PLS), kernel algorithm, 

algorithms improvement, recursive exponentially weighted algorithms 

1. Introduction 

 Research in science and engineering often involves using 

some variables (commonly known as factors or prediction 

variables) which are easy-to-measure and/or controllable to 

explain, regulate, or predict other variables (commonly known 

as dependent variables or response variables). Given having 

many variables and ill-understood relationships, researchers 

tend to select appropriate variables to construct a good 

predictive model. However, a large part of the information 

contained in the data gets lost in the process of data collection. 

Interactions and correlations between factors are omitted, 

although they are of great important for the solution of 

problems. When the factors are few in number, are not 

significantly redundant(collinear), and have a well-understood 

relationship to the responses, methods based on Least-squares 

regression, such as multiple linear regression(MLR), principle 

component analysis(PCA),canonical correlation analysis 

(CCA) and so on, can be a good way to turn data into 

information. However, if any of these three conditions was 

broken down, these methods mentioned above can be 

inefficient or inappropriate. The damaging effects of multiple 

linear correlations in the regression model are summarized by 

Wang Huiwen [1]. So, algorithms and programs must be 

refined and optimized to meet the demands of research. We 

can learn from the thought of PCA and CCA, combined with 

theory of correlation between explanatory variables and the 

response variable in CCA and the method of component 

extraction in PCA. The method is partial least squares 

regression (PLSR). 

 PLS method was first presented by econometrician 

Herman Wold in 1966 and used for social science research [2]. 

A new multivariate statistical analysis method based on PLS 

was presented by S.Wold and C.Albano [3], i.e. partial least 

squares regression (PLSR). Subsequently PLSR measurement 

is widely used and further developed in many fields, such as 

chemistry, biology, medicine. Researches show that in the 

process of using multiple predictor variables to create response 

variable regression model, when there are high correlations 

between variables sets, compared to general multivariate 

regression, the analysis using PLSR is more effective, and the 

conclusion is more reliable[4,5,6,7].  

 To illustrate problems conveniently, the following 

notation is used. Uppercase bold variables are matrices and 

lowercase bold variables are column vectors. X: predictor 

variable matrix (np), Y: response variable matrix (nq), BPLS: 

PLS regression coefficient matrix (pq), W:PLS weights 

matrix for X (pm), P: PLS loadings matrix for X(pm), Q:Y 

matrix of PLS loadings matrix for Y(qm), R: PLS weights 

matrix to calculation scored T directly from original matrix X 

(pm), T:PLS was score matrix of X(nm), wa: a column 

vector of W, pa: a column vector of P, qa: a column vector of 

Q, ta: a column vector of T, ra: a column vector of R, p: 

number of X-variables, q: number of Y- variables, n: number 

of samples, m: number of  components in PLS model, h: 

integer counter for latent variable dimension. 

2. Principle and Algorithm Research 

 In order to explain better the variability of the response 

variable, PLS regression must find some linear combination of 

the predictive variables space. However, it is not directly 

establish the linear regression model in PLS regression, but 

establish the linear regression model of response variables 

with latent variables of predictor variable. The model reflects 

the relationship between predictive variables and response 

variables indirectly. That is there are two groups of latent 

variables were extracted from predictor variables and response 

variables in one time, and they are linear combination of 

predictor variables and response variables respectively, and are 

called factors or components. There are two requirements must 

be meet in the extraction: ① 2 groups of latent factors were 

maximally expressed their variable information respectively; 

② To maximize the covariance between corresponds to the 

latent factors of predictor variables and the latent factors of 

response variables, The mathematical model can be expressed 

as: 
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 Using the classical NIPALS algorithm or kernel 

algorithm [8], we can get a PLS regression model. 

Hoskuldsson [9] discussed the calculation method of the latent 

factors vector in PLSR.  The method is a continuous process 

as following. Firstly, calculate the latent factors of X- and 
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Y-matrices separately, secondly, deflate the X- and Y- 

matrices by subtracting the computed latent factors from them 

in the next calculation. And then calculate the new latent 

factors using the deflated X- and Y- matrices. Note that we 

assume that X- and Y- matrices have been scaled to have zero 

column means so that no bias terms necessary. The detail 

description of typical PLSR algorithm is shown below:  

① Calculated w, t, q, u and p separately with NIPALS 

algorithm, or kernel algorithms; 

② Subtracting the latent factors from X- and Y- 

matrices respectively, then we can get the deflated matrices of 

X- and Y- matrices. 

1 1

T T

h h h h h h h hX X t p Y Y t q                 (2) 

③ Calculated Predicted Residual Sum of Squares 

(PRESS) as below.  
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④ If these residuals are sufficiently small, i.e. 

PRESS(h)- PRESS(h-1)<ε ,whereε is predictive accuracy, or if 

the last dimension was insignificant according to cross 

validation (CV), go to step 5. Else back to step 1.  

⑤ Build linear regression equation of Y on r 

' ' '

1 1 2 2 h hY t r t r t r F                  (4) 

⑥ Establish PLSR equation. Because th is the linear 

combination of X, so that we can get the PLSR equation by 

standard inverse transform. 

* * *

1 , 1,2, ,j jp jp p Mjy a x a x F j q              (5) 

FMj is the jth column of the residual matrix FM. Typically, in the 

PLS regression process, X- and Y- matrices is deflated in step 

2 after calculating the latent factors. 

3. Development of the Kernel Algorithm of the PLS     

Regression 

 Equations (2) are one of deflated process continually 

about the X- and Y- matrices. Therefore when the number of 

predictor variables and response variables is great, we should 

try to avoid the deflated operation of X- and Y- matrices in 

computation process. Especially when the number of latent 

variables is large, the operation will be calculated after several 

iterations. A proof is given that only one of either the X- or the 

Y- matrix in PLS algorithms needs to be deflated during the 

sequential process of computing latent vector[10].Also that 

1 1 1 1 1 1 1
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 Kernel algorithm was proposed by Lindgren [8]. It has 

been proved that T T

1 1 1 1X Y and X X    h h h h
needed not to be deflate 

operation in PLS regression. Deflation of the X- and Y- 

matrices is given as equation (2). Thus, T

1 1X Y h h
and 

T

1 1X X h h
can be represented by (7) and (8) formula: 

1 1 ( )T T T T
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By equations (9) and (10), in the calculation of eigenvector 

extraction, only the need for iterative multiplication, instead of 

deflate operation of T
X X and T

X Y . 

 Equations (9) and (10) included matrix multiplication in 

the deflating calculation; the computational cost is relatively 

high. De Jong [11] improved above algorithm as follows: 

1( ) ( ) ( )T T T T

h h h h h hX X X X p p t t              (9) 

1( ) ( ) ( )T T T T

h h h h h hX Y X Y p q t t              (10) 

Therefore, matrix multiplication in deflation phrase can be 

accomplished by vector product iteratively, so as to decrease 

the cost of calculation. It is obvious that this improved kernel 

algorithms faster than the original kernel algorithm.  

Kernel algorithm given as below: 

① Computing covariance matrices T
X X and T

X Y . 

Kernel matrix T T
X YY X can be calculated with T

X Y  

multiplied by ( )T T
X Y .  

② PLS weight vector 
hw  are calculated by the 

maximum eigenvalue corresponding eigenvector of ( )T T

hX YY X : 

( )T T

h h h

w X YY X w                  (11) 

③ PLS load vector hp and hq is calculated as bellow:  

( ) ( )

( ) ( )

T T T T
T Th h h h
h hT T T T

h h h h h h

w X X w X Y
p q

w X X w w X X w
            (12) 

④ After extracting each latent factors, the residual 

between covariance matrices T
X X  and T

X Y  can be 

represented as equations (9) and (10). 

 In addition, A. Hoskuldsson [5] doesn’t think must be 

degraded Y. finds that T T

h h h hX Y Y X and T T

1 1X Y Y Xh h
 is 

equivalence in each calculation of eigenvectors w for 

covariance matrix T T

h h h hX Y Y X . Hereby, Tenenhaus M [7], 

Lindgren [8], De Jong [12] and the Zhun Yun-hua [13] make 

SIMPLS algorithm, its mathematical model as below. 
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Y X w
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 Advantages of this method are: Component 
i it Xw  

directly linked with the initial X and non deflated 

1 1 1

T

i i i iX X t p     [3], And the obtained results is easier to 

interpret. The solving process of W does not involve variables 

X and Y regression on components of
i it Xw , and save the 

computing on ,h hc u and hF , thus, the calculation process is 

simplified greatly, the calculation is simpler. 

4. Kernel Algorithm Improvements 

 All PLS algorithm is optimized for different types of 

problems. Because there are too many regression coefficients, 

the importance analysis of predictive variables or factors is 

very difficult. In order to meet the real-time modeling online 

system demand, timely, efficient processing of large amounts 
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of data relates to the system modeling, to reduce the 

computation time, and reduce the need for computer memory, 

there is a need for a new method based on kernel algorithm 

and weighted recursive of SIMPLS algorithm, PLS algorithm 

is put forward to solve this kind of problem. The method 

effectively uses the calculated results to make recursive 

computation; amend the new model parameters in real time, 

thus obtain perfect parameter estimation value, and then meet 

the real-time modeling system requirements. B.hupinder and 

S.Dayl [10] have demonstrated a relationship between score 

matrix T and predictor matrix X can be represented by the 

following equation. 

1

1

( )
h

T

h j j h

j

t XR X I w p w




              (14) 

 By literature [14], there exist loop compute relationship 

between computing score vector th and uh, load vector ph, qh, 

wh, ch and the regression coefficient ri, just know one of them, 

we can infer other vectors. 

1 1r w                  (15) 
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 Considering the strength, a key step which calculation 

speed is determined in kernel algorithm is construction of 

matrix T
X X  and T

X Y . By equation (9), construction of 
T

X X is not required. If the sample number is much larger than 

the number of variables (n>>k) in X- matrix, T
X X can be 

easily calculated. Because the storage of T
X X  takes up less 

than storage of X.  

 For regular data collection tasks, the ideal approach is 

recursively update PLS model using each new multivariate as 

is becomes available. This process may be slowly changing 

over time. One would like to weight recent data more heavily 

and discount past data in an exponentially weighted manner. 

Using algorithm with the covariance updating equations, one 

can obtain a fast kernel algorithm for recursive exponentially 

weighted updating of a PLS regression model. 

1( ) ( )T T T

h t h t tX X X X x x               (17) 

1( ) ( )T T T

h t h t tX Y X Y x y               (18) 

 The past data in the covariance matrices are being 

exponentially discounted with a forgetting factor 

(0 1)  t t  and the recent data are being added in each new 

sampling period. For 1 t  no discounting of the old data is 

done. As the covariance matrices in equation (17) and (18) are 

updated with very little computational effort, this algorithm 

will be extremely fast in these applications. Dayal and 

MacGregor[15,16] apply this algorithm to the adaptive 

multivariable control of a simulation continuous stirred tank 

reactor and to the updating of an online multi-output 

prediction model for an industrial mineral flotation circuit. 

 The description of PLS algorithm for recursive weighted 

of is as below: 

① Calculate covariance matrices T
X X , this step is 

optional.  

② If the variable number of Y is less, computed 
hq as 

eigenvectors corresponding   to the largest eigenvalue of 

( )T T

hY X XY , 
hw can be calculated by the following formula. 

( )T T
h

h h h h

h

w
w X Y q w

w
                   (19) 

When the variable number of X are less, computed 
hw as 

eigenvectors corresponding to the largest eigenvalue 

of ( )T T

hX YY X , as shown in equation (10). 

③ The calculation formula for 
hr with formula (16) 

④ The calculation of load vectors 
hp and 

hq . 

Only once computation, one can construct covariance 

matrix T
X X with original matrix X, and then applied in all 

dimensions. 

( ) ( )

( ) ( )

T T T T
T Th h h
h hT T T T

h hh h

r X X r X Y
p q

r X X r r X X r
          (20) 

⑤ to update the covariance matrix T
X Y . 

By equations (9), (10) and (17) (18) have 

(1 )( ) ( )T T T T

t h t t h h h h

X Y x y pq t t                   (21) 

(1 )( ) ( )T T T T

t h t t h h h h

X X x x p p t t                   (22) 

⑥ store w, p, q and r in W, P, Q and R: 

   1 2 1 2
,

m m
W w w w P p p p                   (23) 

   1 2 1 2
,

m m
Q q q q R r r r                    (24) 

⑦ If PRESS(h)- PRESS(h-1)< ε , ε is predictive 

accuracy, then go to step 8; Else turn to step 2 to calculate next 

latent factors; 

⑧ As calculating the latent factors, PLS model 

regression coefficients (factor) are calculated by equation (25). 

T

PLSB RQ                 (25) 

 Simulation using MATLAB® environment, generated 

1000 samples by a random function RAND as experimental 

data in systems analysis. Compared with traditional kernel 

algorithm, improved recursive weighted algorithm has 

improved significantly for calculation speed. It shown that 

recursive weighted PLS algorithm is suitable for real-time 

modeling and analysis process of mass-data. 

5. Discussion 

 Compared to typical PLS algorithm, each new PLS 

algorithm has been almost as revolutionary [17]. To prove new 

algorithm is more useful than the typical PLS algorithm, 

modeling process repeatedly must be considered, which 

involved such as cross validation [18, 19], variable select [20] 

and missing data in sample data, and so on. Cross-validation 

techniques can help to select appropriate number of latent 
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factors in case of without knowing the number of latent 

variables, and then ensure the accuracy of model and 

efficiency of calculation. Rannar [21] research the problem of 

missing data in kernel algorithm proposed by Lindgren. They 

used methods is the EM algorithm [22]. All these key 

measures can accelerate the speed of repeated modeling [23]. 

These techniques have been described in above literature; it is 

just not talk about here. 

 Operation of matrices deflation in duplicated modeling 

must be considered in improvement of PLS algorithm. Hoped 

that regardless of increase or decrease in number of samples or 

variable; it does not need to compute the variance/covariance 

and adjoin matrix repeatedly.  

 In specific applications, forgetting factor (0 1)  ≤t t  

was introduced for weaken the influence of old data, the 

measure improves robustness of recursive algorithm, speeds 

algorithm convergence, and makes the estimate parameters 

more reasonable. Usually determine the overall data range 

based on other ways of handling advance [24]. 

6. Conclusions 

 All improvements to the PLS algorithm, is designed to fit 

a specific task. To select a good algorithm, applied first to 

understand what are the application fields? And what do you 

wanted? After answer these questions, then select the 

appropriate algorithm. For example, when the number of 

samples is far greater than the variable, and the data is updated 

in real time of the modeling process, you can select a weighted 

recursive PLS algorithm. At this point, as long as the 

covariance matrix T
X X  is calculated once, and then can be 

used in all subsequent calculations of p and q. When predictor 

matrix is smaller, may directly matrix to calculate the hp  and 

hq by X. In short, in the PLS algorithm, we deflated only in 

one of X- or Y- matrices. The new algorithm Also provides a 

recursively update PLS model and weighted on the old data 

processing in order to weaken the influence of old data. 

Compared in terms of executed time for the calculations of 

latent factors, cross validation and handing errors between the 

new algorithm and the traditional kernel algorithm, the new 

algorithm have displayed a certain degree of superiority. 
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