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Abstract

The two-parameter deformation of canonical commutation relations is discussed. The
self-adjointness property of the (p, q)-deformed position Q and momentum P operators
is investigated. The (p, q)-analog of two-dimensional conformal field theory based on
the (p, q)-deformation of the su(1, 1) subalgebra of the Virasoro algebra is presented.

1. The one-parameter deformation of canonical commutation relations has arisen from
study of the dual resonance models [1]. The more general deformation of these relations
has been proposed in [2, 3] to construct the Jordan-Schwinger realization of quantum
algebras. Although one-parameter deformations have been mostly studied, the multipa-
rameter ones have aroused much interest because they become more flexible when we are
dealing with applications to concrete physical models. The two-parametric deformations
of the quantum algebras have been studied in [4-9]. By means of the contraction procedure
of the two-parameter deformed quantum group Upq(sl(2)), the two-parameter deformed
canonical commutation relations of the oscillator algebra have been obtained in [8]. The
self-adjointness property of position and momentum operators of the (p, q)-deformed os-
cillator algebra has been investigated in [10].

The (p, q)-deformed oscillator algebra is defined by three generators a, a+, N satisfying
the following (p, q)-deformed canonical commutation relations

aa+ − qa+a = p−N , [N, a] = −a,
aa+ − p−1a+a = qN , [N, a+] = a+.

(1)

From the relations (1), one obtains

a+a = [N ], aa+ = [N + 1], (2)

where [x] means [x]qp = (qx − p−x)/(q − p−1). The two-parameter deformation of the
commutation relations (1) is a generalization of the one-parameter deformation. Putting
in (1) (q, p) = (q, 1), one gets the one-parameter deformation of the canonical commutation
relations [1]
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aa+ − qa+a = 1 (3)

and choosing (q, p) = (q, q), one has the other one-parameter deformation of these relations
[2,3]

aa+ − qa+a = q−N , [N, a] = −a,
aa+ − q−1a+a = qN , [N, a+] = a+.

(4)

The action of the operators a, a+ and N

a|n〉 = [n]1/2
qp |n− 1〉, a+|n〉 = [n + 1]1/2

qp |n + 1〉, N |n〉 = n|n〉 (5)

on the basis vectors |n〉, n = 1, 2, ..., of the Hilbert space defines the Fock representation
of the commutation relations (1). It is naturally to define the (q, p)-deformed position Q
and momentum P operators by the formulas

Q|n〉 = 2−1/2(a+|n〉+ a|n〉), P |n〉 = i2−1/2(a+|n〉 − a|n〉). (6)

Each of operators (6) is defined by the symmetrical Jacobi matrix
b0 a0 0 0 . . .
a0 b1 a1 0 . . .
0 a1 b2 a2 . . .
. . . . .

 . (7)

If ak and bk, k = 0, 1, 2, ... in (7) are bounded, then the operator defined by this matrix
is bounded (Theorem 1.2, Chapter VII in ref. [11]). Depending on the values of the
parameters q and p, one has

lim
n→∞

[n]qp = ∞, q > 1, p > 1,

lim
n→∞

[n]qp = ∞, q < 1, p < 1,

lim
n→∞

[n]qp = 0, q < 1, p > 1,

lim
n→∞

[n]qp = ∞, q > 1, p < 1, qp > 1,

lim
n→∞

[n]qp = ∞, q > 1, p < 1, qp < 1.

(8)

The operators a+ + a, i(a+ − a) are bounded only in the third case of (8) and unbounded
otherwise. It can be shown that operators a+ +a, i(a+−a) are simultaneously self-adjoint
or not self-adjoint. Let us consider the operator a+ + a. In this case we have in (7)
bn = 0, an = [n]1/2

qp , n = 0, 1, ... . In accordance with the Theorem 1.5 from Chapter VII,
in [11], the operator defined by matrix (7) is self-adjoint if the series

∞∑
n=1

1/an (9)

composed from the quantities reversed to an is divergent. If the series (9) converges and
in addition the conditions

an−1an+1 ≤ a2
n, n = 1, 2, ... (10)
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are fulfilled, then the operator defined by the matrix (7) is not self-adjoint (Theorem 1.5,
Chapter VII, [11] ). It can be shown with the help of the inequality a + a−1 ≥ 2 that

[n− 1]1/2
qp [n + 1]1/2

qp ≤ [n]qp, n = 0, 1, 2, ... (11)

for all values q,p. Therefore, the self-adjointness or not self-adjointness of the operator
a+ + a is defined by the divergence or convergence of the series (9). In our case the series

∞∑
n=0

1/[n]1/2
pq (12)

is divergent if q > 1, qp > 1 or p < 1, qp < 1 and convergent if q > 1, qp > 1 or
p > 1, qp < 1. One can conclude from (11) and (12) that the operator a+ + a is self-
adjoint only if it is the bounded operator, that is, if q < 1, p > 1 and does not admit a
self-adjoint closure for all other values of the parameters q and p. According to Theorem
1,1., Chapter VII in [11], the deficiency indices of this operator are equal to (1,1). This
means that deficiency subspaces are one–dimensional. Besides, deficiency subspaces Nz,
Imz 6= 0 are defined by the generalized vectors |z〉 =

∑∞
n=0 Pn(z)|n〉 such that

[n]1/2
qp Pn−1(z) + [n + 1]1/2

pq Pn+1(z) = zPn(z) (13)

with the initial conditions P−1(z) = 0, P0(z) = 1. The solution of equation (13) with these
initial conditions has the form Pn(z) = {[n]qp!}−1/2Hqp

n (z), where polynomials Hqp
n (z)

satisfy the recurrence relation

[n]qpH
qp
n−1(z) + Hqp

n+1(z) = zHqp
n (z), n = 0, 1, 2, ..., (14)

Hqp
0 (z) = 1. Repeating the reasoning of the paper [12], it can be proved that

Hpq
n (z) =

[n/2]∑
k=1

ckz
n−2k (15)

where [n/2] means the integral part of the number n/2 and

ck = (−1)k
n−1∑

mk=2k−1

[mk]pq

mk−2∑
mk−1=2k−3

[mk−1]pq

mk−1−2∑
mk−2=2k−3

[mk−2]pq . . .
m2−2∑
m1=1

[m1]pq (16)

In order to construct the representation of the commutation relations (1) in the space of
analytic functions, we consider the (q, p)-difference derivative [6]

D̃qpf(z) = (f(qz)− f(p−1z))/(q − p−1)z. (17)

The operator D̃qp is a pseudo-differential operator in the space of analytic functions

D̃qpf(z) =
∞∑

n=0

(q − 1)n+1 − (p−1 − 1)n+1

q − p−1

zn

n!
dn+1

dzn+1
f(z). (18)

The basic properties of the (q, p)-derivative D̃qp are

D̃qpc = 0, c ∈ C

D̃qp(f1(z)f2(z))(D̃qpf1)(z)f2(qz) + f1(p−1z)(D̃qpf2)(z).
(19)
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By analogy to the definition of the q-exponential function expq(z), one defines the (q, p)-
exponential function [7]

expqp(z) =
∞∑

n=1

zn/[n]qp!, [n]qp! = [n]qp . . . [1]qp. (20)

From (17) and (20), one obtains

D̃qp expqp(µz) = µ expqp(µz). (21)

We denote by F the space of the analytic functions in the domain {z ∈ C, |z|2 < z0},where
−z0(z0 > 0) is the largest root of the function (20). In this space, the operators

a+f(z) = zf(z), af(z) = Dqpf(z), Nf(z) = zdf(z)/dz (22)

define a representation of the commutation relations (1). To construct the scalar product
in the space F , we define a Jackson (q,p)-integral. It is defined by

Iqp =
∞∑

k=1

(q−kp−k − q−k−1p−k−1)af(q−k−1p−ka), |qp| > 1 (23)

and

Iqp =
∞∑

k=1

(qkpk − qk+1pk+1)af(qkpk+1a), |qp | < 1. (24)

A simple calculation yields

a∫
0

f1(p−1z)D̃qpf2(z)dqpz = [f1(z)f2(z)]|a0 −
a∫

0

f2(qz)D̃qpf1(z)dqpz, (25)

a∫
0

f(sz)dqpz =
1
s

sa∫
0

f(z)dqpz. (26)

Making use of (24) and (25), it is easy to find∫ a

0
zm expqp(−z) dqpz = (q−1p)m(m+1)/2[m]qp! (27)

In the space F we can define the scalar product

(f, g) =
1
2π

∫ z0

0

(∫ 2π

0
f̄(z)g(z)dθ

)
expqp(−|z|

2)dqp|z|2, (28)

where z = |z| exp iθ. The set of the functions

un(z) = (qp−1)n(n+1)/4zn/{[n]qp!}1/2, n = 1, 2, . . . (29)

of the space F form an orthonormal system with respect to the scalar product (28).
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Now we investigate the Hermitian conjugation of the operators a and a+ with respect
to (28). Expanding the functions f(z) and g(z) in the orthonormal system (29), one has

(zf, g) =
∞∑

n=0
f̄ngn+1[n + 1]1/2

qp (q−1p)(n+1)/2,

(f, D̃qpg) =
∞∑

n=0
f̄ngn+1[n + 1]1/2

qp (qp−1)(n+1)/2.

(30)

Comparing the right–hand sides of equations (30), we see that the operators z and D̃qp

are Hermitian conjugate

(zf, g) = (f, D̃qpg) (31)

with respect to the scalar product (28) if q2 = p2. If q = p, we have the operator (17) and
the representation of the commutation relations (4). If q = −p, one obtains the difference
operator

D̃q,−qf(z) =
f(qz)− f(−q−1z)

(q + q−1)z
(32)

and the representation of the (p, q) = (q,−q) one-parameter deformed canonical commu-
tation relations.
2. The generalizations of conformal field theory based on deformations of the symmetry
algebra have been studied in [14-19]. The space of states of conformal field theory is an
inner product space carrying the representation of the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
n(n + 1)δm+n,0, n = 0,±1,±2, . . . (33)

The properties of correlation functions of the theory are determined by the Ward identities
for the subalgebra su(1, 1) of the Virasoro algebra (33)

[E0, E+1] = E+1, [E0, E−1] = −E−1, [E−1, E+1] = −2E0, (34)

where E0 = −L0, E−1 = L−1, E+1 = L+1. The universal enveloping algebra U(su(1, 1))
of the Lie algebra (34) admits the Hopf algebra structure. In particular, the operation of
the comultiplication is defined as

∆(En) = En ⊗ 1 + 1⊗ En, n = 0,±1. (35)

The homomorphism ∆ : su(1, 1) → su(1, 1) ⊗ su(1, 1) can be extended to the one ∆N :
su(1, 1) → ⊗N

i=1su(1, 1) by the formula

∆N (En) = (∆⊗ id⊗ . . .⊗ id) . . . (∆⊗ id)∆(En), n = 0,±1. (36)

There exist various deformations of the universal enveloping algebra U(su(1, 1)) preserving
the Hopf algebra structure. As such it is the (p, q)-deformation Upq(su(1, 1)) of this algebra.
The generators K+1,K−1,K0 of the quantum algebra Upq(su(1, 1)) satisfy the following
commutation relations [7]

[K0,K+1] = K+1, [K0,K−1] = −K−1,

[K−1,K+1]pq = K−1K+1 − qp−1K+1K−1 = [2K0]pq,
(37)
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where [a]pq = (qa − p−a)/(q − p−1) and p, q are complex parameters. The algebra (37)
admits the Hopf algebra structure. In particular, the operation of the comultiplication is
given by the formula

∆(K±1) = qK0 ⊗K±1 + K±1 ⊗ p−K0 ,∆(K0) = K0 ⊗ 1 + 1⊗K0. (38)

The representation of the commutation relations (37) on the space F of functions f(z) is
defined as

K+1f(z) = z(q2hf(zq)− p−2hf(zp−1)/(q − p−1),

K−1f(z) = (1/z)(f(zq)− f(zp−1)/(q − p−1),

Kqf(z) def= qK0f(z) = qhf(qz),

(39)

where h is a conformal dimension of quasi-conformal field. A quasi-primary field φh(z)
with the conformal dimension h is transformed under Upq(su(1, 1) as

[K̂n, φh] = {zn[(n + 1)h]pqφh(zq) + p−(n+1)hzn+1(Dpqφh)(z)}K̂−1
p , n = ±1,

K̂qφh(z)K̂−1
p = qhφh(zq).

(40)

The commutator on the left–hand side of the first equality in (40) is defined as

[A,φh(z)] = Aφh(z)− K̂qφh(z)K̂−1
q A (41)

with A ∈ Upq(su(1, 1)). The formulae (40) and (41) at p = 1 coincide with the formulae
(7) and (8) of [15] and at p = q = 1 we obtain

[K̂n, φh(z)] = zn[z∂z + h(n + 1)]φh(z), n = 0,±1, (42)

that is the transformation law of primary fields of conformal field theory. The Upq(su(1, 1)
invariant vacuum |0〉, K̂±1|0〉 = 0, K̂q‖0〉 = |0〉, and quasi-primary fields φh1(z), φh2(z),
. . ., φhN

(z) of the conformal weights h1, h2, . . . , hN , respectively, define the correlation
functions

〈φ1(z1) . . . φN (zN )〉pq = 〈0|φh1(z1) . . . φhN
(zN )|0〉pq. (43)

Using the commutation relations (40), (41) and the Upq(su(1, 1)) invariance of the vac-
uum, we obtain the equations which provide the Upq(su(1, 1)) invariance of the correlation
functions

0 = 〈K̂nφ1(z1) . . . φN (zN )〉 =
∑N

j=1 qh1+h2+...+hj−1p−hj+1−...−hN

×〈φ1(qz1) . . . φj−1(qzj−1)φ̂i(zi)φj+1(p−1zj+1 . . . φN (p−1zN )〉pq,
(44)

〈K̂qφ1(z1) . . . φN (zN )〉pq = qh1+h2+...+hN 〈φ1(qz1) . . . φN (qzN )〉pq, (45)

where φ̂(z) = {[(n + 1)h]pqz
nφ(qz) + zn+1Dpqφ(z)}K̂−1

p , n = ±1. With the help of (38)
and (39), the equation (44) can be rewritten as

∆N (K±1)〈φ1(z1)φ2(z2) . . . φN (zN )〉pq = 0. (46)
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The equations (45), (46) define the (p, q)-deformation of the su(1, 1) Ward identities
of conformal–invariant field theory. The identities (45),(46) with the help of (38) can be
rewritten as

∆(K±1)〈φi(z1)φj(z2)〉pq = (qK0 ⊗K±1 + K±1 ⊗ p−K0)〈φi(z1)φj(z2)〉pq = 0,

∆(Kp)〈φi(z1)φj(z2)〉pq = 〈φi(z1)φj(z2)〉pq.
(47)

From (47) we obtain the following set of difference equations

(p−h2/z1)〈φi(p−1z1)φj(p−1z2)〉pq − ((p−h2/z1)− (qh1/z2)〈φi(qz1)φj(p−1z2)〉pq

−(qh1/z2)〈φi(qz1)φ2(qz2)〉pq = 0,

p−2h1−h2z1〈φi(p−1z1)φj(p−1z2)〉pq − (q2h1p−h2z1 − qh1p−2h2z2)

×〈φi(qz1)φj(p−1z2)〉pq − qh1+2h2z2〈φi(qz1)φj(qz2)〉pq = 0,

qhi+hj 〈φi(qz1)φj(qz2)〉pq = 〈φi(z1)φj(z2)〉pq.

(48)

The set of equations (48) is consistent and admits a solution if and only if the two
conformal weights h1 and h2 are equal: h1 = h2 = h. A solution of the set of equations
(48) can be obtained by the following ansatz

〈φ1(z1)φ2(z2)〉pq = C(p, q)z−a
1φ

pq
0 (a; (pq)αz2/z1), (49)

where the function nφpq
n−1(a1, . . . , an; b1, . . . , bn−1; z) is a (p, q)-hypergeometric function

(17) of [13]. The solution (49) of the set of equations (48) can be written as

〈φ1(z1)φ2(z2)〉pq = C(p, q)z−2h
1 φpq

0 (2h; (pq)1−hz2/z1) (50)

In [17-18], the solution (49) has been represented in some other form. The (p, q)-deformed
Ward identities (44) for the three-point correlation function 〈φi(z1)φj(z2)φk(z3)〉pq can be
rewritten as

(K+1 ⊗ p−K0 ⊗ p−K0 + qK0 ⊗K+1 ⊗ p−K0 + qK0 ⊗ qK0 ⊗K+1)
〈φi(z1)φ(z2)φk(z3)〉pq = 0,

(K−1 ⊗ p−K0 ⊗ p−K0 + qK0 ⊗K−1 ⊗ p−K0 + qK0 ⊗ qK0 ⊗K−1)

×〈φi(z1)φj(z2)φk(z3)〉pq = 0,

qh1+h2+h3〈φi(qz1)φj(qz2)φk(qz3)〉pq = 〈φi(z1)φj(z2)φk(z3)〉pq.

(51)

The set of equations (51) reduces to the following set of difference equations

p−2h1−h2−h3z1〈φi(p−1z1)φj(p−1z2)φk(p−1z3)〉pq

−(p−h2−h3q2h1z1 − p−2h2−h3qh1z2)〈φi(qz1)φj(p−1z2)φk(p−1z3)〉pq

−(p−h3qh1+2h2z2 − p−2h3qh1+h2z3)〈φi(qz1)φj(qz2)φk(p−1z3)〉pq

−qh1+h2+2h3z3〈φi(qz1)φj(qz2)φk(qz3)〉pq = 0,

(1/z1)p−h2−h3〈φi(p−1z1)φj(p−1z2)φk(p−1z3)〉pq

−((1/z1)p−h2−h3 − (1/z2)p−h3qh1)〈φi(qz1)φj(p−1z2)φk(p−1z3)〉pq

−(1/z2)p−h3qh1 − (1/z3)qh1+h2)〈φi(qz1)φj(qz2)φk(p−1z3)〉pq

−(1/z3)qh1+h3〈φi(qz1)φj(qz2)φk(qz3)〉pq = 0,

qh1+h2+h3〈φi(qz1)φj(qz2)φk(qz3)〉pq = 〈φi(z1)φj(z2)φk(z3)〉pq.

(52)
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This set of equations is consistent and completely defines the three-point correlation func-
tion of the quasi-primary fields

〈φi(z1)φj(z2)φk(z3)〉pq = Cijk(p, q)z−γ3
12−γ2

31
1 z

−γ1
23

2

×1φ
pq
0 (γ3

12; (pq)1−h1z2/z1) 1φ
pq
0 (γ1

23; (pq)1−h2z3/z2) 1φ
pq
0 (γ2

31; (pq)1−h1+h2z3/z1)
(53)

with γk
ij = hi + hj − hk. The three-point correlation function (53) in the limiting cases

p = 1 and p = q → q−1 coincides, respectively, with the one of [14] and [15].
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