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Abstract

The two-parameter deformation of canonical commutation relations is discussed. The
self-adjointness property of the (p, ¢)-deformed position ) and momentum P operators
is investigated. The (p, ¢)-analog of two-dimensional conformal field theory based on
the (p, ¢)-deformation of the su(1,1) subalgebra of the Virasoro algebra is presented.

1. The one-parameter deformation of canonical commutation relations has arisen from
study of the dual resonance models [1]. The more general deformation of these relations
has been proposed in [2, 3] to construct the Jordan-Schwinger realization of quantum
algebras. Although one-parameter deformations have been mostly studied, the multipa-
rameter ones have aroused much interest because they become more flexible when we are
dealing with applications to concrete physical models. The two-parametric deformations
of the quantum algebras have been studied in [4-9]. By means of the contraction procedure
of the two-parameter deformed quantum group Up,(sl(2)), the two-parameter deformed
canonical commutation relations of the oscillator algebra have been obtained in [8]. The
self-adjointness property of position and momentum operators of the (p, q)-deformed os-
cillator algebra has been investigated in [10].

The (p, q)-deformed oscillator algebra is defined by three generators a, a4, N satisfying
the following (p, ¢)-deformed canonical commutation relations

aa+ —qaya = p_N, [N’ (Z] = —a,
aay —p~laya =gV, [N at] = ay.

(1)
From the relations (1), one obtains
ara = [N]7 a4 = [N + 1]7 (2)

where [z] means [z]g = (¢° —p~®)/(¢ — p~!). The two-parameter deformation of the
commutation relations (1) is a generalization of the one-parameter deformation. Putting
in (1) (¢,p) = (g,1), one gets the one-parameter deformation of the canonical commutation
relations [1]
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aay —qara =1 (3)
and choosing (g, p) = (g, q), one has the other one-parameter deformation of these relations
2,3]

— — g N N.al = —
aa+ qa+a q ) [ ) a] a, (4)
aay —q lara = ¢V, [N,;ai] = ay.

The action of the operators a,a; and N

aln) = [nly*In = 1), asln) = [n+ 1y n+ 1), Nin) =nln) (5)

on the basis vectors |n),n = 1,2, ..., of the Hilbert space defines the Fock representation
of the commutation relations (1). It is naturally to define the (g, p)-deformed position @
and momentum P operators by the formulas

Qln) =27 2(ayln) +aln)),  Pln) =i272(ay|n) — aln)). (6)
Each of operators (6) is defined by the symmetrical Jacobi matrix

b() ag 0 0
aq bl aj 0 .o
0 aq b2 as ' (7)

If ap, and by, k = 0,1,2,... in (7) are bounded, then the operator defined by this matrix
is bounded (Theorem 1.2, Chapter VII in ref. [11]). Depending on the values of the
parameters ¢ and p, one has

lim [n|,, =00, ¢>1, p<1, qgp >1,
lim [n|g =00, ¢>1, p<1, gp <1
The operators a4 + a,i(ay — a) are bounded only in the third case of (8) and unbounded

otherwise. It can be shown that operators a4 +a,i(a4+ —a) are simultaneously self-adjoint
or not self-adjoint. Let us consider the operator a4 + a. In this case we have in (7)

b, =0,a, = [n]é;,/,Q,n =0,1,... . In accordance with the Theorem 1.5 from Chapter VII,
n [11], the operator defined by matrix (7) is self-adjoint if the series

S 1/a ©)
n=1

composed from the quantities reversed to a,, is divergent. If the series (9) converges and
in addition the conditions

p—10n+1 < a%,n =1,2,.. (10)
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are fulfilled, then the operator defined by the matrix (7) is not self-adjoint (Theorem 1.5,
Chapter VII, [11] ). It can be shown with the help of the inequality a + a~! > 2 that

[n — 1%+ 1]42 < [n]gp.n = 0,1,2, ... (11)

for all values gq,p. Therefore, the self-adjointness or not self-adjointness of the operator
a4+ + a is defined by the divergence or convergence of the series (9). In our case the series

S 1/ (12
n=0

is divergent if ¢ > 1,qp > 1 or p < 1,gqp < 1 and convergent if ¢ > 1,qp > 1 or
p > 1,qp < 1. One can conclude from (11) and (12) that the operator a4 + a is self-
adjoint only if it is the bounded operator, that is, if ¢ < 1,p > 1 and does not admit a
self-adjoint closure for all other values of the parameters ¢ and p. According to Theorem
1,1., Chapter VII in [11], the deficiency indices of this operator are equal to (1,1). This
means that deficiency subspaces are one—dimensional. Besides, deficiency subspaces IV,
Imz # 0 are defined by the generalized vectors |z) = > 02, P,(z)|n) such that

()b 2 Pa1(2) + [n + 12 Prir(2) = 2Pu(2) (13)

with the initial conditions P_1(z) = 0, Py(z) = 1. The solution of equation (13) with these
initial conditions has the form P,(z) = {[n],!}~Y/2HIP(z), where polynomials HIP(z)
satisfy the recurrence relation

n]gpH 1 (2) + HE ((2) = zHP(2),n =0,1,2, ..., (14)

H{P(z) = 1. Repeating the reasoning of the paper [12], it can be proved that

[n/2]
HP(z) = Z 2w (15)
k=1
where [n/2] means the integral part of the number n/2 and
n—1 my—2 mp_1—2 mo—2
=D D7 Il Do [kl Y [mkalpge o Y [malpe (16)
my=2k—1 myg_1=2k—3 my_o=2k—3 m1=1

In order to construct the representation of the commutation relations (1) in the space of
analytic functions, we consider the (g, p)-difference derivative [6]

Dopf(2) = (f(gz) — fF(0™'2)) /(¢ —p7 ") (17)

The operator ﬁqp is a pseudo-differential operator in the space of analytic functions

- i — 1)t _ (p=1 _ )ntl yn gnitl
Bypf(e) = Y U= 2 2D 2 ) (18)
n=0 ’

The basic properties of the (g, p)-derivative bqp are

quc:(), ceC

’ i o (19)
Dap(f1(2) f2(2))(Dap f1)(2) f2(a2) + fr(p™"2) (Dgp f2) ().
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By analogy to the definition of the g-exponential function exp,(z), one defines the (g, p)-
exponential function [7]

oo

equp(Z) = Z 2" [[n]gp!,  [nlgp! = [lgp - - - [Ugp- (20)

n=1

From (17) and (20), one obtains

Doy expy (12) = prexpy(12). (21)
We denote by F the space of the analytic functions in the domain {z € C, |2|? < zo},where
—z0(z0 > 0) is the largest root of the function (20). In this space, the operators

ayf(z) = 2f(2), af(2) = Dgpf(2), Nf(z) = zdf(z)/dz (22)

define a representation of the commutation relations (1). To construct the scalar product
in the space F', we define a Jackson (q,p)-integral. It is defined by

oo
qu = Z(q*kp*k _ q*kflp*kfl)af(qfkflpfka)’ |qp‘ > 1 (23)
k=1
and
oo
qu = Z(qkpk: - qk-i-lpk‘-l-l)af(qk:pk-i—la)7 ‘qp ’ <1 (24)
k=1

A simple calculation yields

[ 179D a2z = (1112 [ £2002) Dy iy (25)
0 0

[ 2z = [ 1y (20)
0 0

Making use of (24) and (25), it is easy to find

| expgp(=2) dz = (g ) 2 1)

In the space F' we can define the scalar product

(F9) =5 [ ( I f(z)g(z)d9> exDp (121 )dap 1% (28)

2
where z = |z| expif. The set of the functions
Uun(2) = (qp~ )" VA 012 m = 1,2, .. (29)

of the space F' form an orthonormal system with respect to the scalar product (28).
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Now we investigate the Hermitian conjugation of the operators a and a with respect
to (28). Expanding the functions f(z) and g(z) in the orthonormal system (29), one has

(Zf, g) = ZO fngn+1[n + 1];1/)2((1_1]))(”""1)/2’
= (30)
(f) qug) = 2_:0 fngn+1[n + 1];{)2(qp—1)(n+1)/2.

Comparing the right-hand sides of equations (30), we see that the operators z and qu
are Hermitian conjugate

(2f,9) = (f, Dapg) (31)
with respect to the scalar product (28) if ¢> = p?. If ¢ = p, we have the operator (17) and
the representation of the commutation relations (4). If ¢ = —p, one obtains the difference
operator

flgz) = f(=q'2)
(g+q 1)z

and the representation of the (p,q) = (¢, —q) one-parameter deformed canonical commu-
tation relations.

2. The generalizations of conformal field theory based on deformations of the symmetry
algebra have been studied in [14-19]. The space of states of conformal field theory is an
inner product space carrying the representation of the Virasoro algebra

Dq,qu(z) = (32)

c
[Lim, Lp]) = (m —n)Lypgn + En(n + 1)0mino0, n=0,£1,£2,... (33)

The properties of correlation functions of the theory are determined by the Ward identities
for the subalgebra su(1, 1) of the Virasoro algebra (33)

[Eo, E41] = Eq1, [Eo,E_1]=—E_1, [E_1,E41] = —2Ey, (34)

where Fg = —Lg,E_1 = L_1,Ey1 = Ly;. The universal enveloping algebra U(su(1,1))
of the Lie algebra (34) admits the Hopf algebra structure. In particular, the operation of
the comultiplication is defined as

AE,) =E,®14+1®E,, n=0,+l. (35)

The homomorphism A : su(1,1) — su(1,1) ® su(1,1) can be extended to the one AV :
su(1,1) — @~ su(1,1) by the formula

AN(E) = (A®id®...®id)... (A®id)A(E,), n=0,%+1. (36)
There exist various deformations of the universal enveloping algebra U (su(1,1)) preserving
the Hopf algebra structure. Assuch it is the (p, ¢)-deformation Uy, (su(1, 1)) of this algebra.

The generators K1, K_1, Ky of the quantum algebra Up,(su(1,1)) satisfy the following
commutation relations [7]

[KO7K+1] = K+17 [KO7K—1] = _K—17

(37)
[K—17 K+1]pq = K—1K+1 - qp—1K+1K—1 - [2K0]pQ7
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where [a]p; = (¢* —p~®)/(¢ — p~ ') and p,q are complex parameters. The algebra (37)
admits the Hopf algebra structure. In particular, the operation of the comultiplication is
given by the formula

A(Ki1) = ¢ @ Ky + K1y @ p X A(Kp) = Ko ® 14 1 ® K. (38)

The representation of the commutation relations (37) on the space F' of functions f(z) is
defined as

K+1f( )= 2(*" f(zq) —p~ 2 f(zp~ ) /(g — p7h),
1f(2) = (1/2)(f(zq) — f(zp)) /(g = p7Y), (39)
Kof () © g5 f(2) = ¢" f(g2),

where h is a conformal dimension of quasi-conformal field. A quasi-primary field ¢p(2)
with the conformal dimension & is transformed under U,q(su(1,1) as

(Ko, dn] = {2"[(n + Dhlpgdn(2q) + p~ DR HY(Dygp) (2) KL, 0= £1, (10)
Kqon(2)Ky 1 = ¢"én(2q).
The commutator on the left—hand side of the first equality in (40) is defined as
[A, ¢n(2)] = Adn(2) — Kgon(2)K, ' A (41)

with A € Upq(su(1,1)). The formulae (40) and (41) at p = 1 coincide with the formulae
(7) and (8) of [15] and at p = ¢ = 1 we obtain

(K, 6n(2)] = 2"[20: + h(n + D]én(z), n=0,+1, (42)

that is the transformation law of primary fields of conformal field theory. The Upq(su(1,1)
invariant vacuum [0), K41]0) =0, K,4||0) = |0), and quasi-primary fields ¢y, (2), ¢n,(2),

..y Ony(2) of the conformal weights hq,ho, ..., hy, respectively, define the correlation
functions
(@1(21) - ON(2N))pg = (O@n, (21) - - - Py (23)]0) pg- (43)

Using the commutation relations (40), (41) and the Up,(su(1,1)) invariance of the vac-
uum, we obtain the equations which provide the Up,(su(1,1)) invariance of the correlation
functions

0 = <[A(n¢1(z1) ( )> ;V_ qh1+h2+ +hj 1p hj+1—...—hN

i (44)
x(¢1(g21) - .- dj-1(q2j-1)0i(20)Pj1 (0 2j51 - . ON(D L 2N) )y
(Kgd1(21) . dn(28))pg = ¢ T2V (61 (g21) . . o (428)) g, (45)

where () = {[(n + Dhly"6(a2) + " Dpy(2)}K; 1, m = 1. With the help of (38)
and (39), the equation (44) can be rewritten as

AN(K11)(d1(21)¢2(22) - dn (28))pg = 0. (46)
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The equations (45), (46) define the (p, ¢)-deformation of the su(1,1) Ward identities
of conformal-invariant field theory. The identities (45),(46) with the help of (38) can be
rewritten as

A(K1)(¢i(21)j(22))pg = (¢7° @ K1 + K1 @ p~ ") (hi(21)85(22))pg = 0,
A(Kp){(9i(21)05(22))pg = (0i(21)95(22))pg-

From (47) we obtain the following set of difference equations
("2 /1) (a0 21) (P~ 22))pg — (D772 /21) — (" /22){bi(q21) D (™" 22)) g
—(q" /22)(di(az1)d2(qz2))pg = O,
P (0i(p T 21)di (P 22))pg — (6P P22 — M) (48)

x(¢i(g21)9;(p~ 22)>pq - qh1+2h2z2<¢z(qzl)¢g (q22))pq = 0,

q" i (9i(q21)05(a22))pg = (01(21)¢5(22)) pg-

The set of equations (48) is consistent and admits a solution if and only if the two
conformal weights h; and ho are equal: hy = hy = h. A solution of the set of equations
(48) can be obtained by the following ansatz

(47)

($1(21)¢2(22))pq = C(p, @)z~ "160" (a5 (pg)* 22/ 21), (49)
where the function ,¢2? | (a1,...,an;b1,...,bp—1;2) is a (p, q)-hypergeometric function
(17) of [13]. The solution (49) of the set of equations (48) can be written as

(61(21)02(22))pg = C(p, 021 2" 84 (2h; (pg)' " 22/ 21) (50)

In [17-18], the solution (49) has been represented in some other form. The (p, ¢)-deformed
Ward identities (44) for the three-point correlation function (¢;(21)¢;(22)dk(23))pq can be
rewritten as

(Kpy@p Fogp K4 ¢fog K @p o4 ¢5o¢fow Ki)
(#i(21)P(22)Pk(23))pg = 0,

(KaepfogpfoidfogK jop o4+ edooK ) (51)
x(@i(21)¢;(22)br(23))pg = 0,

gt (i(q21) 5 (q22) Pk (023) ) pg = (Di(21)5(22) D1 (23) ) pg-

The set of equations (51) reduces to the following set of difference equations

p2mhe=ha o (i (p721) 5 (D 22) Bk (P 23) ) pg
—(phahagPh gy — pm2he=hagh o) (i (g21) 5 (P 22) D (D 23) ) pg
—(p~hagh T2 zy — p2hsghithaz) (i(q21)d5(q22) k(P 23))pg

— gt 2 (i (g21) 5 (q22) B (923) )pg = O,

(1/20)p~" "3 pi(p™" 21) 5 (P 22) b (D™ 23)) g (52)
—((1/z1)p~"2 7" — (1/20)p7"3¢" ) (hi(g21) 5 (0™ 22) 0k (0™ 23)) pg

—(1/22)p™"3q" — (1/23)¢" ") (¢i(q21) 8 (a22) 0k (0™ 23)) pg
—(1/23)d" 7 (pi(az1) 05 (q22) dr(a23) )pg = 0,

¢t (g (q21) 5 (q22) D (423))pg = (Bi(21) D (22) Pr(23)) pg-
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This set of equations is consistent and completely defines the three-point correlation func-
tion of the quasi-primary fields

(64(21)65(22)6(28))pg = Clgn(p, @)z 12 5125758

(53)
X185 (Vig; (pa) ™M 20/ 1) 188 (dgs (pa)' 223/ 22) 1601 (Vs (pg) TR 25/ 2)

with %kj = hi + hj — hy. The three-point correlation function (53) in the limiting cases
p=1and p=gq — ¢! coincides, respectively, with the one of [14] and [15].
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