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Abstract

The transformation group theoretic approach is applied to present an analysis of the
nonlinear unsteady heat conduction problem in a semi—infinite body. The application
of one—parameter group reduces the number of independent variables by one, and
consequently the governing partial differential equation with the boundary and initial
conditions to an ordinary differential equation with the appropriate corresponding
boundary conditions. The ordinary differential equation is solved analytically for
some special forms of the thermal parameters. The general analysis developed in this
study corresponds to thermal parameters that has different forms with coordinates
and time.

1 Introduction

This paper considers the problem of temperature distribution in a material having coor-
dinates and time dependent thermal properties. These problems have numerous applica-
tions in various branches of science and engineering, specially with the problems associated
with nuclear power plants and with vehicles designed to travel in the upper atmosphere
and outer space. That is why this type of problems has received considerable attention
throughout the history of heat conduction and the literature of the topic is very rich. One
will find an attractive discussion of the subject in [8, 12] and [16].

A heat conduction problem becomes nonlinear either due to nonlinearity of the differen-
tial equation or boundary conditions or both. Since there is no general theory available for
solution of nonlinear partial differential equations, the analysis of such problems becomes
difficult and each problem should be treated individually.

A variety of approximate and numerical methods are available for solution of these
problems. A commonly used numerical scheme for solution of partial differential equations
is the finite—difference method, which is described in [19]. The Monte Carlo method, which
based on probability sampling techniques, has been considered in [11]. In 1969, Emery
and Carson [9] considered the finite-element method to solve heat conduction problems
in solids. The primary advantages of the finite—element over the finite—difference method
are that the irregular boundaries can be handled easily and the size of the finite element
can be varied readily over the region. Recently the boundary element method has been
considered extensively by Aral and Tang [5], where the numerical solution of continuum
problems is performed with a reduction of dimensionality of the problem.
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Various approximate methods of analysis have been developed to solve heat conduction
problems. Some of such methods are the integral methods that have been first used by
Goodman [10], to solve one-dimensional transient heat conduction, whereas Sfeir [20]
considered the case of two—dimensional steady conduction.

The mathematical technique used in the present analysis is the parameter—group trans-
formation. The group method, as a class of methods which lead to reduction of the number
of independent variables, was first introduced by Birkhoff [7] in 1948, where he made use
of one—parameter transformation groups. In 1952, Morgan [14] presented a theory which
has led to improvements over earlier similarity methods. In 1990 and 1991, Abd—el-Malek,
et al [1, 2, 3, 6] have applied the group methods analysis, intensively, tostudy some prob-
lems in free—convective laminar boundary layer flow on a nonisothermal bodies. Detailed
calculations can be found in Ames [4] and Ovsiannikov [15].

Although this review is not comprehensive, it is clear that all these investigations
are limited to studies of similarity solutions since the similarity variables can give great
physical insight with minimal efforts. In [21] one finds vast summary tables of the variable
and boundary conditions ensuring similarity problems.

In this work we present a general procedure for applying one—parametric group trans-
formation to the partial differential equation of heat conduction in solids, and the bound-
ary and inital conditions. Under the transformation, the partial differential equation is
reduced to an ordinary differential equation with appropriate boundary conditions. The
equation is then solved analytically for some forms of the thermal parameters.

2 Mathematical formulation

The fundamental equation for the temperature distribution in a stationary, homogenous,
isotropic solid material, thermal conductivity, K, and the volumetric specific heat, S, vary
with coordinates and time, is derived by the usual process of equating the net heat inflow
over the boundary of volume to the product of the temperature rise and the heat capacity.
Assuming no heat is generated inside the solid, the governing equation is given by:

oT
V- (KVT) = S (2.1)
where T is the temperature at time ¢ of a point in the material, which coordinates are
(2,9, 2).

Let us consider the case of a semi-infinite metal with a constant flux of heat onto its
surface. Assume the inital temperature is zero and the temperature vanishes as x — oo.
If this plane face is located at = = 0, equation (2.1) reduces to:

0 oT oT

with the following conditions
(1) the boundary conditions:

(i) —Kg::L at =0, t>0 (2.3)

(id) lim T(x,t) =0, >0, (2.4)
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(2) the initial condition:

T(xz,0)=0, z>0. (2.5)

3 Solution of the problem

The method of solution depends on the application of one—parameter group transformation
to the partial differential equation (2.2). Under this transformation the two independent
variables will be reduced by one and we obtain the differential equation in only one inde-
pendent variable, which is the similarity variable.

3.1 The group systematic formulation

The procedure is initiated with the group G, a class of transformation of one—parameter

7a” of the form

G:Q=0C%a)Q+ E%a), (3.1)

where @) stands for ¢,x,T, K, S and the C’s are real-valued and at least differentiable in
the real argument "a”.

3.2 The invariance analysis

To transform the differential equation, transformations of the derivatives are obtained
from G via chain—rule operations:

Q;=(Co/cQ;,  j=ta

— . (3.2)
Q5 = (CQ/CIC)Qyy, i=tx, j=ta
where @ stands for T, K and S.
Equation (2.2) is said to be invariantly transformed whenever
ST; K T — K5 = H(a) STy - KToy — K, T, (3.3)

for some function H(a) which may be a constant.
Substitution from equations (3.1) into equation (3.3) for the independent variables,
the functions and their partial derivatives yields

cscT cKCT cKCT
ar ST - L KTy — WKITI + R = H(a) [STt — KT,y — KxTx}, (3.4)
where
T K T S
p_ C'E CTES .

(01)2 Tow — Ot
The invariance of (3.4) implies R = 0. This is satisfied by putting

EX=FE5=0 (3.5)
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and

S T KT
e e ) (3.6)

Moreover, the boundary conditions (2.3) and (2.4) and initial condition (2.5) are also
invariant in form, imply that

ct =1

., ET=0, CcKc*=1. (3.7)
Combining equations (3.6) and invoking the result (3.7), we get

CK ce 2
‘§:L7L~ (3.8)
C C
Finally, we get the one-parameter group G which transforms invariantly the differential
equation (2.2) and the boundary and the initial conditions (2.3-2.5) The group G is of the

form

t=Clt+E!
T=C%+ E”
a: ! T=T (3.9)
Z_ Cs(cctrx)zK
S=0C%8

3.3 The complete set of absolute invariants

Our aim is to make use of group methods to represent the problem in the form of an
ordinary differential equation (similarity representation) in a single independent variable
(similarity variable). Then we have to proceed in our analysis to obtain a complete set
of absolute invariants. In addition to the absolute invariant of the independent variable,
there, are three absolute invariants of the dependent variables T, K and S.

If n = n(t,x) is the absolute invariant of the independent variables, then
g;(t,2, T, K, 8) = F[n(t,z)|, j=1,2,3. (3.10)

are the three absolute invariants corresponding to 7', K and S. The application of a basic
theorem in group theory, see [13], states that:
a function g(t,z,T, K, S) is an absolute invariant of a one—parameter group if it satisfies
the following first—order linear differential equation
5
D (@iQi+ ﬂi);g =0, (3.11)
2 Q:

2

where Q; stands for ¢, x,T, K and S, and

ai:ig%(ao), 1=1,2,...,5

Bi = agfi(ao), 1=1,2,...,5

(3.12)
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where a’ denotes the value of ”a” which yields identity element of the group. Without
loss of generality we can assume that B! = E% = 0, then

Bi=0 i=12,...5 (3.13)

At first, we seek the absolute invariant of the independent variables. Owing to equa-
tion (3.11), n(t,z) is an absolute invariant if it satisfies first-order partial differential
equation

a1xn, + agtny = 0, (3.14)
which has a solution in the form
n(t, ) = z*t°, (3.15)

where a = a1, = —as.
The second step is to obtain absolute invariants of the dependent variables T', K and
S. Now, from the transformations (3.9) T is itself an absolute invariant. Thus

g1(t,z;T) = Fi(n) = T(n). (3.16)

Now, equations

g 992 dg2

051513% + CEQtE + a4K8—K = O, (317)
dgs3 J93 dga

oa1x o + oot o + a4 S 55 = 0, (3.18)

may be solved to get the other two absolute invariants

oalt. 1K) = B |G| = Fa(o) (319
g3(t, 23 K) = @9 L}(f:n)} = F3(n), (3.20)

where ¥(¢,z) and w(t,x) are functions to be determined. Without loss of generality, the
functions ®’s in (3.19) and (3.20) are selected to be the identity functions. Then we
can express the functions K and S in terms of the absolute invariants Fy(n) and F3(n),
respectively, in the form

K = U(t, ) Fa(n), (3.21)

S =w(t,z)F3(n). (3.22)

4 The reduction to ordinary differential equation

As the general analysis proceeds, the established forms of the dependent and indepen-
dent absolute invariants are used to obtain ordinary differential equation. Generaly, the
absolute invariant 7(¢, z) has the form given in (3.15).
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Substituting from (3.16), (3.21) and (3.22) into equation (2.2) yields
[wnt} BT = [\pnm] BT + [\pngﬂ BT + [\Ifxnx} AT + [qmg] (Fy)'T, (4.1)

where the primes refer to differentiation with respect to 7.
For (4.1) to reduce to on expression in single independent variable 7, it is nesessary
that the coefficients be constants or functions of 1 alone. Thus

wi = C1, (4.2)
Uy = Oy, (4.3)
U(n,)? = Cs, (4.4)
Vone = Cy. (4.5)

It follows, then, that (4.1) may be rewritten as
(C3 )T = [c — 1Fy — CyFy — CyFy — cg(Fg)’} T (4.6)

The boundary condition (2.3), under the similarity variable (3.15), is transformed to
the boundary condition

7'(0) = —1. (4.7)
For the following forms of ¥(¢,x) and Fy(t,x : K)

U — p—(ntha+l ;—(n+1)8

)

(4.8)
F2 - nna
where n = ..., —2,—1,0,1,2,..., the only possible form, in our case, for K(t,x), using
(3.21), is
Ktz)=z'"2tF a>0, 8<0. (4.9)

The second boundary condition (2.4) and the initial condition (2.5), under the similarity
variable (3.15), coalesce into the condition

T(c0) = 0. (4.10)

Hence the differential equation (2.2) with the conditions (2.3-2.5) will be replaced by the
differential equation (4.6) with the conditions (4.7) and (4.10).

5 Analytical solution for different forms
of thermal parameters
Differential equation (4.6) is intractable, and apparently can only be solved by approximate

or numerical methods. We restricted ourself to find the exact solution for some possible
forms of the thermal parameters K and S, and for a wide range of the similarity variable
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n =z t%, where « is a real positive constant and 3 is a real negative constant.
For Fs(t,x;5) to be function of n, the possible form for w is
n

t
t = —. 5.1
wlty ) = © (1)
Hence, for n, K and w given in (3.15), (4.9) and (5.1) respectively, we get the analytic
solution for the following cases:
Case (1): for the following forms of thermal parameter S, in terms of w and #:
2
(1) S = _%w7
(2) §=—2
- 5 7,

_a? 9 ala+2)w
2
(4) S= —%w\/ﬁ.
The analytic solution for T'(n) is
T(n)=e".
Case (2): for the following forms of thermal parameter S, in terms of w and 7:

(1) S= —%wn

(2) S= —%wn

ﬁ
The analytic solution for 7T'(n) is
T
T(n) = YT extc (n).

Case (3): for the following forms of thermal parameter S, in terms of w and 7:

(1) S= ——w\f

(2) 8=

(3) §=-3upr 4 Aty
(4) S= 32% wn.

The analytic solution for T'(n) is

T(n)=— /077 exp(—r*?)dr +T (2) .
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Case (4): for the following forms of thermal parameter S, in terms of w and #:

(1) §= 3222

g
(2) § =35 uwp
(3) S= —3;%%1774 + a(aﬁ—i— 2) %

The analytic solution for 7'(n) is

T(n) =— /071 exp(—r®)dr +T (3) :

Case (5): for the following forms of thermal parameter S, in terms of w and n:

(1) sz%w&%%%%g

O

(3) s_gw¥03@;%%+am+m%
W 5= a0 22

The analytic solution for 7'(n) is

1
T(n) = 5 [V exfe (n) + exp(—1)]
Case (6): for the following forms of thermal parameter S, in terms of w and #:
(1) §=-2y 1
I R T
_ a7
az 7’]3 O[(O[ + 2) w
TAYTER T T B T+
a2 Zz3/2
The analytic solution for T'(n) is
T(n) = (2 +n) exp(-n).

Case (7): for the following forms of thermal parameter S, in terms of w and #:

1) §=%urF

3) S§=

3T+
(3) = %wn2{1+—nn) n a(agr 2) o
(4) §= VIl

BYTIFy
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The analytic solution for T'(n) is

T(n) = (n* + 4n + 3) exp(—n).

6 Conclusion

The most widely applicable method for determining analytic solution of partial differential
equation that utilizes the underlying group structure has been applied to the classical
problem of a semi—infinite metal with a constant flux of heat onto its surface and zero
temperature at the inital time. Moreover, for large value of distance. We found analytic
solution, successfully, for wide range of possible forms of the thermal parameters.

For other possible forms of the thermal parameters, where the obtained ordinary dif-
ferential equation can not be solved analytically, a numerical solution can be obtained,
using the fourth—order Runge—Kutta scheme and the gradient method.
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