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Abstract

The paper contains a symmetry classification of the one-dimensional second order
equation of a hydrodynamical type L(Lu) + A\Lu = F(u), where L = 0y + ud,. Some
classes of exact solutions of this equation are given.

In [1, 2], the following generalized Navier—Stokes equation
MLG + Mo L(LF) = F (%) 5+ A4V, (1)
was proposed, where

o 9
= — — 4+ A3, 1=1,2,3
8t+va$l+3 ’ 5 4y 9y

7= (v, 0% 0?), vl = ol(t, %), p = p(t,¥), V is the gradient, A is the Laplace operator,
A1, A2, A3, A\q are arbitrary real parameters, F’ (172) is an arbitrary differentiable function.
In the one—dimensional scalar case, when A3 = 0, Ay = 0, Eq.(1) has the form

M Lu+ Ao L(Lu) = F(u), (2)
where u = u(t,z), L = 0y + ud,.
In the case when A2 = 0 and F(u) = 0, Eq.(2) is known to describe the simple wave
u=@(x —tu), (3)

where ¢ is an arbitrary function.
If Ay # 0, then Eq.(2) can be rewritten in the form

L(Lu) + ALu = F(u), X = const. (4)
Eq.(4) in an expanded form is written as follows

82u+2 0%*u +8u8u+ (8u)2+ 282u+)\<8u+ 8u>
— +2u—+ —— tul — U — — tu—
ot? otdxr Ot Oz Ox Ox? ot Ox
This equation with arbitrary F'(u) is evidently invariant under the two—dimensional
algebra of translations that is determined by the operators
Po=8, P =0, (5)
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= F(u).
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In the present paper, we carry out a symmetry classification of Eq.(4), i.e., we describe
functions F'(u), with which Eq.(4) admits more extensive Lie algebras than the two—
dimensional algebra of translations (5). A symmetry classification of (4) is performed
using the Lie algorithm [4, 5, 6] in the class of first-order differential operators

X =&0(t, 2, u)0 + €' (t, 2, )0 + 1(t, 7, 1) Dy (6)
Remark. In cases the 1.4, 2.3, 2.4, we assume that

00 _ o _

ou ou
It is obvious that the cases A = 0 and A # 0 will be essentially different for the investigation

of symmetries of Eq.(4). If A # 0, then one can always set A = 1 (there exists such a change
of variables). For this reason, we consider the cases A = 0 and A = 1 separately.

0.

I. Let us consider Eq.(4), when A = 0, i.e., the equation
L(Lu) = F(u). (7)
Symmetry classification of (7) leads to five distinct cases.

Case 1.1. F(u) is an arbitrary continuously differentiable function.
The maximal invariance algebra in this case is the two—dimensional algebra (5).

Case 1.2. F(u) =aexp(u), a,b—const,a#0,b#0.
The maximal invariance algebra of the equation

L(Lu) = aexp (u) (8)
is a three-dimensional algebra < Py, P1,Y >, where

Y =t + (x — 2t)0, — 20,.

We note that Y can be represented as the linear combination of the dilation and Galilei
operators

Y = (8, + 20,) — 2(td, + 8,) = D — 2G.

The operators D and G commute, thus the transformations corresponding to Y can be
interpreted as a composition of dilation and Galilei transformations, i.e., as a composition
of a dilation in ¢ and x with a change of the inertial system. On the other hand, the
operators < Py, P1,Y > form a subalgebra of the extended Galilei algebra, although the
extended Galilei algebra is not an invariance algebra of Eq.(8). The same results are valid
for other cases of Eq.(4).

Case 1.3. F(u) =a(u+0b)P, a,b,p— const, a #0,p# 0,p # 1.
The maximal invariance algebra of the equation

L(Lu) = a(u + b)?

is a three—dimensional algebra < Py, P1, R >, where

— 2%
R = t8, + (Mx—t)agg—
p—1 p—1
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Case 1.4. F(u) =au+b, a,b— const,a#0

Performing a change of variables, one can always set a = 1 or a = —1. Let us consider
these cases.

a) The invariance algebra of the equation

L(Lu)=u+b
is a seven—dimensional algebra < Py, P1,Y1,Ys,Ys, Yy, Y5 >, where

Y = (& + bt)dy + (u + b)dy,

Y5 = cosh t0, + sinh td,,

Y3 = sinh t0, + coshtd,,

Yy = coshtd; + (x + bt) sinh td, + ((z + bt) cosht + bsinh )0,
Y5 = sinh td; + (x + bt) cosh td, + ((x + bt) sinh ¢ + bcosh t)d,.

b) The invariance algebra of the equation
L(Lu)=—u+b
is a seven—dimensional algebra < Py, P, R1, Ra, R3, R4, Rs >, where

Ry = (x — bt)0y + (u — )0y,

Ry = costd, — sintd,,

R3 = sintd, + costd,,

Ry = —costdy + (x — bt) sintdy + ((x — bt) cost — bsint)d,,
Rs = sint0; + (x — bt) costdy — ((x — bt) sint + bcost)d,.

Case 1.5. F(u) =a, a = const.

In the case a # 0, there exists a change of variables, so that without loss of generality we
can assume that a = 1. Thus we consider the cases a = 0 and a = 1 separately.

a) The maximal invariance algebra of the equation

L(Lu)=0
is a ten—dimensional algebra < Py, P1,G, D, D1, Ay, Ag, As, Ay, A5 >,

G =10, + Oy,

D= t@t + $ag;7

D1 = x@x + u@u,

A, = %ﬂat + t20, + 20y,

Ay = 5120, + 10,
As = ud; + 3u?0,,
Ag = (tu— 2)0 + $tu?0; + §u0,,

Ay = (tPu — 2tx) O + (%t2u2 - 2x2) Oy + (tu® — 2zu) 9.
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Note, that the subalgebras < Py, P1,G > and < Ay, —As, G > define two different repre-
sentations of the Galilei algebra AG(1,1) [4].
b) The maximal invariance algebra of the equation

L(Lu) =1
is a ten—dimensional algebra < Py, P1, G, B, Bo, B3, As, B4, Bs, Bg >,

By = 10; + 310, + 2u0,,
By = (x — %t3) O + (u — %tQ) Ous

By =120, + (tx + ﬁt‘*) Oy + (:c + %ti*) B,

By = (u _ %tQ) 8y + (%u2 - %t‘*) 9y + (tu _ %t?’) B,

B = (tu _z— %ti”) O+ (%tuQ — Ltz - 2%755) Ot
(%uz + 50—tz — 2%#) B,

Bs = (t2u — 9y — %t‘*) 9y + (%t%ﬂ — 222 Ltda — 7—12t6) Ot
(tu2 — 2zu + $t%u — 122 — %ﬁ) D

Note, that this algebra includes also two different Galilei algebras < Py, P;,G > and
< B3, —As, G > as subalgebras.
II. Let us consider Eq.(4) for A # 0. As was noticed above, we can set A = 1. Symmetry

classification gives in this case four essentially distinct cases.

Case 2.1. F(u) is an arbitrary continuously differentiable function. The maximal invari-
ance algebra of the equation

L(Lu) 4+ Lu = F(u),
is the two-dimensional algebra (5).
Case 2.2. F(u) = au® — %u, a = const, a # 0.

The maximal invariance algebra of the equation

L(Lu) + Lu = au® — gu

is a three—dimensional algebra < Py, P, Z >, where

Z = exp (;t) <8t — ;u(?u) .

Case 2.3. F(u) =au+b, a,b— const, a # 0.
The invariance algebra of the equation

L(Lu) 4+ Lu =au+b
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is a five—dimensional algebra < Py, P, Z1, Zy, Z3 >, where

b b
7z = (m—i—t) Oy + <u+> Oy,
a a
and two olther operators depending on constant a have the form
a)a=—73

Zy = exp (—%t) <3x - %C%) ;
Zs = exp (—%t) (t@x + (1 - %t) au) :
b) a > _le a#0

Zy = exp(at)(9z + ady),
Z3 = exp(Bt)(0x + BOu),

where
—1—-+4a+1 —1++4da+1
B E—
c)a< —%
Zy = exp(yt)(sin 6tdy + (ysin dt + d cos 6t)0,,),
Z3 = exp(yt)(cos 0ty + (y cos 6t — 0 sin 0t)d,,),
where
v = 1 5 = 7\,—(4a+1)

2 2

Case 2.4. F(u) =a, a = const.
The invariance algebra of the equation

L(Lu)+Lu=a
is a five-dimensional algebra < Py, P, G, Q1, @2 >, where

Q1 = (2= §22) 0o + (u — at),
Q2 = exp(—t)(0r — Oy).

Thus, we have investigated the symmetry classifications of (4) and given all functions
F(u) under which the invariance algebra of (4) admits the extension. The new represen-
tations which can have an interesting physical interpretation have been obtained. The
symmetry properties of (4) can be used for a symmetry reduction and construction of the

solutions and for their generation by finite group transformations [4, 5, 6].

In the case when Eq.(4) has the form

L(Lu)+ ALu=a, a,\ — const

9)
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the change of variables

t=r,
r=w+ur, (10)
u=mu

enables us to construct the general solution of (9). As a consequence of the change of
variables (10), we obtain:

0 0
L = a + U% 87-,

ou ou Uy
Lu= ot " or 14+ Tuy

After the change of variables, Eq.(9) has the form

Ur Ur
T — T ) =a. 11
aT(1+TUw>+)\<1+TUw> ¢ )

Integrating (11) once, we get a linear inhomogeneous partial defferential equation. Finding
first integrals of the corresponding system of characteristic equations and performing the
inverse change of variables, we find solutions of (9).

If F(u) # const in (4), then this method does not lead to solutions. Below we give
some classes of solutions of Eq.(9):

1. L(Lu) =0
C
1.1 x—ut—l—;tQ = p(u — Ct),
1.2 u:l:ln(x—ut:Ft):gp<t2—(:n—ut)2),

t(x —ut)? ( 9 1 )
13 ut LT (2 S
v t2(x —ut)? —1 4 (x —ut)?)’

xr —ut x — ut
14 u= — t2) dt.
“=v (exp (t2)> exp (%) /eXp ( )

2. L(Lu) =a

a.s ¢ 2 a .o

3. L(Lu)+ Lu=a

x—ut —C(t+1)exp(—t) + %tQ = ¢ (u+ Cexp(—t) — at),

C = const, ¢ is an arbitrary function.
Some results of this paper are published in [3].
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