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Abstract
The paper contains a symmetry classification of the one–dimensional second order
equation of a hydrodynamical type L(Lu) + λLu = F (u), where L ≡ ∂t + u∂x. Some
classes of exact solutions of this equation are given.

In [1, 2], the following generalized Navier–Stokes equation

λ1L~v + λ2L(L~v) = F
(
~v2
)

~v + λ4∇p, (1)

was proposed, where

L ≡ ∂

∂t
+ vl ∂

∂xl
+ λ34, l = 1, 2, 3,

~v =
(
v1, v2, v3

)
, vl = vl(t, ~x), p = p(t, ~x), ∇ is the gradient, 4 is the Laplace operator,

λ1, λ2, λ3, λ4 are arbitrary real parameters, F
(
~v2
)

is an arbitrary differentiable function.
In the one–dimensional scalar case, when λ3 = 0, λ4 = 0, Eq.(1) has the form

λ1Lu + λ2L(Lu) = F (u), (2)

where u = u(t, x), L ≡ ∂t + u∂x.
In the case when λ2 = 0 and F (u) = 0, Eq.(2) is known to describe the simple wave

u = ϕ(x− tu), (3)

where ϕ is an arbitrary function.
If λ2 6= 0, then Eq.(2) can be rewritten in the form

L(Lu) + λLu = F (u), λ = const. (4)

Eq.(4) in an expanded form is written as follows

∂2u

∂t2
+ 2u

∂2u

∂t∂x
+

∂u

∂t

∂u

∂x
+ u

(
∂u

∂x

)2

+ u2 ∂2u

∂x2
+ λ

(
∂u

∂t
+ u

∂u

∂x

)
= F (u).

This equation with arbitrary F (u) is evidently invariant under the two–dimensional
algebra of translations that is determined by the operators

P0 = ∂t, P1 = ∂x. (5)
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In the present paper, we carry out a symmetry classification of Eq.(4), i.e., we describe
functions F (u), with which Eq.(4) admits more extensive Lie algebras than the two–
dimensional algebra of translations (5). A symmetry classification of (4) is performed
using the Lie algorithm [4, 5, 6] in the class of first–order differential operators

X = ξ0(t, x, u)∂t + ξ1(t, x, u)∂x + η(t, x, u)∂u. (6)

Remark. In cases the 1.4, 2.3, 2.4, we assume that

∂ξ0

∂u
= 0,

∂ξ1

∂u
= 0.

It is obvious that the cases λ = 0 and λ 6= 0 will be essentially different for the investigation
of symmetries of Eq.(4). If λ 6= 0, then one can always set λ ≡ 1 (there exists such a change
of variables). For this reason, we consider the cases λ = 0 and λ = 1 separately.

I. Let us consider Eq.(4), when λ = 0, i.e., the equation

L(Lu) = F (u). (7)

Symmetry classification of (7) leads to five distinct cases.

Case 1.1. F (u) is an arbitrary continuously differentiable function.
The maximal invariance algebra in this case is the two–dimensional algebra (5).

Case 1.2. F (u) = a exp (u), a, b – const, a 6= 0, b 6= 0.
The maximal invariance algebra of the equation

L(Lu) = a exp (u) (8)

is a three–dimensional algebra < P0, P1, Y >, where

Y = t∂t + (x− 2t)∂x − 2∂u.

We note that Y can be represented as the linear combination of the dilation and Galilei
operators

Y = (t∂t + x∂x)− 2(t∂x + ∂u) = D − 2G.

The operators D and G commute, thus the transformations corresponding to Y can be
interpreted as a composition of dilation and Galilei transformations, i.e., as a composition
of a dilation in t and x with a change of the inertial system. On the other hand, the
operators < P0, P1, Y > form a subalgebra of the extended Galilei algebra, although the
extended Galilei algebra is not an invariance algebra of Eq.(8). The same results are valid
for other cases of Eq.(4).

Case 1.3. F (u) = a(u + b)p, a, b, p – const, a 6= 0, p 6= 0, p 6= 1.
The maximal invariance algebra of the equation

L(Lu) = a(u + b)p

is a three–dimensional algebra < P0, P1, R >, where

R = t∂t +
(

p− 3
p− 1

x− 2b

p− 1
t

)
∂x −

2
p− 1

(u + b)∂u.
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Case 1.4. F (u) = au + b, a, b – const, a 6= 0
Performing a change of variables, one can always set a ≡ 1 or a ≡ −1. Let us consider
these cases.
a) The invariance algebra of the equation

L(Lu) = u + b

is a seven–dimensional algebra < P0, P1, Y1, Y2, Y3, Y4, Y5 >, where

Y1 = (x + bt)∂x + (u + b)∂u,
Y2 = cosh t∂x + sinh t∂u,
Y3 = sinh t∂x + cosh t∂u,
Y4 = cosh t∂t + (x + bt) sinh t∂x + ((x + bt) cosh t + b sinh t)∂u,
Y5 = sinh t∂t + (x + bt) cosh t∂x + ((x + bt) sinh t + b cosh t)∂u.

b) The invariance algebra of the equation

L(Lu) = −u + b

is a seven–dimensional algebra < P0, P1, R1, R2, R3, R4, R5 >, where

R1 = (x− bt)∂x + (u− b)∂u,
R2 = cos t∂x − sin t∂u,
R3 = sin t∂x + cos t∂u,
R4 = − cos t∂t + (x− bt) sin t∂x + ((x− bt) cos t− b sin t)∂u,
R5 = sin t∂t + (x− bt) cos t∂x − ((x− bt) sin t + b cos t)∂u.

Case 1.5. F (u) = a, a = const.
In the case a 6= 0, there exists a change of variables, so that without loss of generality we
can assume that a ≡ 1. Thus we consider the cases a = 0 and a = 1 separately.
a) The maximal invariance algebra of the equation

L(Lu) = 0

is a ten–dimensional algebra < P0, P1, G,D,D1, A1, A2, A3, A4, A5 >,

G = t∂x + ∂u,
D = t∂t + x∂x,
D1 = x∂x + u∂u,

A1 = 1
2 t2∂t + tx∂x + x∂u,

A2 = 1
2 t2∂x + t∂u,

A3 = u∂t + 1
2u2∂x,

A4 = (tu− x)∂t + 1
2 tu2∂x + 1

2u2∂u,

A5 =
(
t2u− 2tx

)
∂t +

(
1
2 t2u2 − 2x2

)
∂x +

(
tu2 − 2xu

)
∂u.
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Note, that the subalgebras < P0, P1, G > and < A1,−A2, G > define two different repre-
sentations of the Galilei algebra AG(1, 1) [4].
b) The maximal invariance algebra of the equation

L(Lu) = 1

is a ten–dimensional algebra < P0, P1, G,B1, B2, B3, A2, B4, B5, B6 >,

B1 = t∂t + 3x∂x + 2u∂u,

B2 =
(
x− 1

6 t3
)

∂x +
(
u− 1

2 t2
)

∂u,

B3 = 1
2 t2∂t +

(
tx + 1

12 t4
)

∂x +
(
x + 1

3 t3
)

∂u,

B4 =
(
u− 1

2 t2
)

∂t +
(
1
2u2 − 1

8 t4
)

∂x +
(
tu− 1

2 t3
)

∂u,

B5 =
(
tu− x− 1

3 t3
)

∂t +
(
1
2 tu2 − 1

2 t2x− 1
24 t5

)
∂x+(

1
2u2 + 1

2 t2u− tx− 5
24 t4

)
∂u,

B6 =
(
t2u− 2tx− 1

6 t4
)

∂t +
(
1
2 t2u2 − 2x2 − 1

3 t3x− 1
72 t6

)
∂x+(

tu2 − 2xu + 1
3 t3u− t2x− 1

12 t5
)

∂u.

Note, that this algebra includes also two different Galilei algebras < P0, P1, G > and
< B3,−A2, G > as subalgebras.

II. Let us consider Eq.(4) for λ 6= 0. As was noticed above, we can set λ ≡ 1. Symmetry
classification gives in this case four essentially distinct cases.

Case 2.1. F (u) is an arbitrary continuously differentiable function. The maximal invari-
ance algebra of the equation

L(Lu) + Lu = F (u),

is the two–dimensional algebra (5).

Case 2.2. F (u) = au3 − 2
9u, a = const, a 6= 0.

The maximal invariance algebra of the equation

L(Lu) + Lu = au3 − 2
9
u

is a three–dimensional algebra < P0, P1, Z >, where

Z = exp
(

1
3
t

)(
∂t −

1
3
u∂u

)
.

Case 2.3. F (u) = au + b, a, b – const, a 6= 0.
The invariance algebra of the equation

L(Lu) + Lu = au + b
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is a five–dimensional algebra < P0, P1, Z1, Z2, Z3 >, where

Z1 =
(

x +
b

a
t

)
∂x +

(
u +

b

a

)
∂u,

and two other operators depending on constant a have the form
a) a = −1

4

Z2 = exp
(
−1

2 t
) (

∂x − 1
2∂u

)
,

Z3 = exp
(
−1

2 t
) (

t∂x +
(
1− 1

2 t
)

∂u

)
,

b) a > −1
4, a 6= 0

Z2 = exp(αt)(∂x + α∂u),
Z3 = exp(βt)(∂x + β∂u),

where

α =
−1−

√
4a + 1

2
, β =

−1 +
√

4a + 1
2

c) a < −1
4

Z2 = exp(γt)(sin δt∂x + (γ sin δt + δ cos δt)∂u),
Z3 = exp(γt)(cos δt∂x + (γ cos δt− δ sin δt)∂u),

where

γ = −1
2
, δ =

√
−(4a + 1)

2
.

Case 2.4. F (u) = a, a = const.
The invariance algebra of the equation

L(Lu) + Lu = a

is a five–dimensional algebra < P0, P1, G,Q1, Q2 >, where

Q1 =
(
x− a

2 t2
)

∂x + (u− at)∂u,

Q2 = exp(−t)(∂x − ∂u).

Thus, we have investigated the symmetry classifications of (4) and given all functions
F (u) under which the invariance algebra of (4) admits the extension. The new represen-
tations which can have an interesting physical interpretation have been obtained. The
symmetry properties of (4) can be used for a symmetry reduction and construction of the
solutions and for their generation by finite group transformations [4, 5, 6].

In the case when Eq.(4) has the form

L(Lu) + λLu = a, a, λ – const (9)
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the change of variables
t = τ,
x = ω + uτ,
u = u

(10)

enables us to construct the general solution of (9). As a consequence of the change of
variables (10), we obtain:

L =
∂

∂t
+ u

∂

∂x
→ ∂τ ,

Lu =
∂u

∂t
+ u

∂u

∂x
→ uτ

1 + τuω
.

After the change of variables, Eq.(9) has the form

∂τ

(
uτ

1 + τuω

)
+ λ

(
uτ

1 + τuω

)
= a. (11)

Integrating (11) once, we get a linear inhomogeneous partial defferential equation. Finding
first integrals of the corresponding system of characteristic equations and performing the
inverse change of variables, we find solutions of (9).

If F (u) 6= const in (4), then this method does not lead to solutions. Below we give
some classes of solutions of Eq.(9):

1. L(Lu) = 0

1.1 x− ut +
C

2
t2 = ϕ(u− Ct),

1.2 u± ln(x− ut∓ t) = ϕ
(
t2 − (x− ut)2

)
,

1.3 u +
t(x− ut)3

t2(x− ut)2 − 1
= ϕ

(
t2 − 1

(x− ut)2

)
,

1.4 u = ϕ

(
x− ut

exp
(
t2
))− x− ut

exp
(
t2
) ∫ exp

(
t2
)

dt.

2. L(Lu) = a

x− ut +
a

3
t3 +

C

2
t2 = ϕ

(
u− a

2
t2 − Ct

)
.

3. L(Lu) + Lu = a

x− ut− C(t + 1) exp(−t) +
a

2
t2 = ϕ (u + C exp(−t)− at) ,

C = const, ϕ is an arbitrary function.
Some results of this paper are published in [3].
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