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Abstract

Bäcklund transformations, which are relations among solutions of partial differential
equations–usually nonlinear–have been found and applied mainly for systems with two
independent variables. A few are known for equations like the Kadomtsev-Petviashvili
equation [1], which has three independent variables, but they are rare. Wahlquist and
Estabrook [2] discovered a systematic method for searching for Bäcklund transforma-
tions, using an auxiliary linear system called a prolongation structure. The integrabil-
ity conditions for the prolongation structure are to be the original differential equation
system, most of which systems have just two independent variables. This paper dis-
cusses how the Wahlquist-Estabrook method might be applied to systems with larger
numbers of variables, with the Kadomtsev-Petviashvili equation as an example. The
Zakharov-Shabat method is also discussed. Applications to other equations, such as
the Davey-Stewartson and Einstein equation systems, are presented.

I Introduction

The following discussion reports some completed work and some work in progress. In the
study of various nonlinear partial differential equations (pde) that has taken place in the
last 30 years, it has become recognized that certain pde’s admit what are called ”Bäcklund
transformations” (BT’s). These can be given a formal definition [3], but I shall speak of
them here only as equations that allow one to find a new solution of the given partial
differential equation from an old one, often by simple quadratures (integrations.) These
can also give rise to BT ”superposition” relations that enable one to find new solutions
algebraically after one has performed the first integration steps. It should be noted in
the following that, because of the variety of mathematical expressions, some latin and
greek letters will be used more than once; generally the notation within any one section
is unique.
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II Sine-Gordon Equation

A simple, standard example of a BT is that for the sine-Gordon equation, written as [4]

φuv = sinφ, (1)

where subscripts indicate differentiation. The BT is

φ′u = φu + 2k sin
(φ′ + φ

2

)
,

φ′v = −φv + 2k−1 sin
(φ′ − φ

2

)
,

(2)

where φ is an old (seed) solution of Eq. (1), φ′ is a new solution, and k is a parameter.
Eqs. (2) are to be integrated for φ′. This is particularly easy if the seed solution is simply
the zero solution; then integration gives

φ′ = 4arctan(exp(ku+ k−1v)), (3)

the single soliton solution. If φ0 is a beginning solution, and φ1 and φ2 are solutions
obtained from applying the BT to φ0, with parameters k1 and k2, respectively, then φ3,
defined by

tan
(φ3 − φ0

4

)
=
k1 + k2

k1 − k2
tan

(φ1 − φ2

4

)
, (4)

is also a solution of Eq. (1) (BT superposition.) [5]
How does one obtain the BT? One general systematic method for doing this is due to

Wahlquist and Estabrook (WE) [2]. We illustrate it here for the sine-Gordon equation.
First we define new variables in order to write the given pde(s) as first order equations.

For our case, we define
r = φu (5a)

then
rv = sinφ. (5b)

One can search for a potential z of these equations by writing

dz = f(r, φ)du+ g(r, φ)dv (6)

and requiring integrability, substituting from Eq. (5) where possible. That gives

fr sinφ+ fφφv = grru + rgφ. (7)

Since ru and φv are independent, we must put fφ = gr = 0. All equations can now be
solved to find

f = r2, g = −2 cosφ. (8)

Thus z, defined as an integral, is

z =
∫
r2du− 2 cosφdv, (9)
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which is always defined because of the conditions imposed, provided that φ is a solution
of Eq. (1). Equivalently, we can write Eq. (5) as 2-forms

α = dφdv − rdudv,

β = drdu+ sinφdudv,
(10)

which are the basis of an ideal I of 2-forms. (We often suppress the symbol ∧ in the hook
product of forms.) Then we write a 1-form

σ = −dz + f(r, φ)du+ g(r, φ)dv (11)

and require
dσ ⊂ I (12)

giving the same equations as before.
The WE method generalizes these equations by letting the potential become a ”pseu-

dopotential” z, the equations for which are generalized by letting z be a dependent variable:

dz = F (r, φ, z)du+G(r, φ, z)dv. (13)

Integrability and substitution from Eq. (13) now give

−Fr sinφ+ rGφ + FGz −GFz = 0. (14)

Equivalently, we can write

ω = −dz + F (r, φ, z)du+G(r, φ, z)dv (15)

and require
dω ⊂ {I, ω}. (16)

A sufficiently general solution of these equations is

F = ra+ b, G = c sinφ+ e cosφ, (17)

where a, b, c, and e are functions of z satisfying a certain set of ordinary differential equa-
tions. These may be solved to give (where k is a constant)

ω = −dz + (k sin z − r)du+ k−1 sin(z + φ)dv. (18)

This method can in turn be generalized to many pseudopotentials ζµ. We write

dζµ = Fµ(r, φ, ζν)du+Gµ(r, φ, ζν)dv. (19)

While these equations may be written in general, an extremely important special case is
that in which the equations are linear in the pseudopotentials:

dζµ = Fµ
ν(r, φ)ζνdu+Gµ

ν(r, φ)ζνdv. (20)

We may write Eq. (20) in terms of column vectors and matrices. If ζ is a column vector
of the ζµ and ω is a column vector of 1-forms, we write

ω = −dζ + (Fdu+Gdv)ζ, (21)
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where now F and G are matrix functions of r and φ. Solution gives

F = rA+B, G = C sinφ+ E cosφ, (22)

where A,B,C, and E are constant matrices. These matrices now satisfy an incomplete
Lie algebra:

[A,C] = −E, [B,E] = 0,
[A,E] = C, [B,C] = −A.

(23)

Such a set of equations, or the associated linear equations, is often called a ”prolongation
structure” (PS). A particular representation of the matrices, satisfying Eq. (23), is

B = k2E =
k

2

(
−1 0
0 1

)
, A =

1
2

(
0 1
−1 0

)
, C =

1
2k

(
0 1
1 0

)
. (24)

Then the ζµ satisfy the equations (to be annulled)

ω1 = −dζ1 +
1
2
(−kζ1 + rζ2)du+

1
2k

(ζ2 sinφ− ζ1 cosφ)dv,

ω2 = −dζ2 +
1
2
(kζ2 − rζ1)du+

1
2k

(ζ1 sinφ+ ζ2 cosφ)dv.
(25)

The original pseudopotential z is now given by

z = 2arctan(ζ2/ζ1). (26)

To find the BT, we propose the Ansatz that there are new field variables r′, φ′ which
are functions of the old variables r, φ and the pseudopotential(s). It is sufficient just to use
z. The new variables are substituted in the original pde and equations for the functions
are found, given that the old variables also satisfy the original pde and that z satisfies
ω = 0 in Eq. (18). Equivalently, we write the differential form relations

{α′, β′} ⊂ {α, β, ω} (27a)

or
I ′ ⊂ {I, ω}. (27b)

We find
r′ = r − 2k sin z, φ′ = −φ− 2z. (28)

The first of these is the first of Eqs. (2); the v-derivative of the second is the second of
Eqs. (2).

The essential steps can be formulated as: (1) put the pde(s) into a first–order form; (2)
assume a PS, find the incomplete Lie algebra, and find a representation for it; (3) assume
new solution variables which are functions of the old ones and the pseudopotentials (or
prolongation variables), and solve the resulting equations. In the results, it may be possible
to eliminate the pseudopotentials as above.

We may write the equations for the PS in the general approach as, where x and t are
now taken to be the independent variables,

ζx = −Fζ, ζt = −Gζ. (29)
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Equivalently,
ω = dζ + (Fdx+Gdt)ζ (30)

is to be annulled. Then the requirement of (ζx)t = (ζt)x, substituting where appropriate
from Eq. (29), and setting the coefficient of ζ to zero, or alternatively requiring

dω ⊂ {I, ω}, (31)

gives
−Ft +Gx + [F,G] = 0 (mod S), (32)

where S means the set of original field equations, or

dFdx+ dGdt+ [F,G]dxdt ⊂ I (33)

in terms of the ideal I of forms.
The number of pseudopotentials may often be taken as two, so that the dimension of

the matrices is 2 × 2. In other cases, a higher number (say, n) may be needed. Usually,
ratios of the pseudopotentials may be used in step (3), thus yielding n − 1 nontrivial
variables. In the PS for the Ernst equation of general relativity [6], it was also necessary
to allow the matrices to be functions of a particular combination of independent variables
(invariant under the equation symmetry group).

This method was successfully applied to the Korteweg-deVries equation [2,7], the non-
linear Schrödinger equation [8], the Ernst equation as already noted, and other equations.
These equations all have just two independent variables; in that case, the maximum rank
of the basis forms in the ideal I (from the pde’s) is two.

III Generalization to Three Variables

A natural question is: can the method be applied to systems with more than two inde-
pendent variables?

To attempt to generalize the basic method to three variables [4], we model it after
the two–dimensional case. We first put the equations in a first–order form. Then we
assume a vector of pseudopotentials ζ, defined as follows, where x, y, and t are taken
as the independent variables. These coordinates and equations are adapted for the KP
equation which follows below.

ζx = −Fζ −Aζy

ζt = −Gζ −Bζy.
(34)

Integrability, (ζx)t = (ζt)x, and setting the coefficients of ζ, ζy, and ζyy to zero now give:

[A,B] = 0 ( 0.35)
[A,G]− [B,F ] = 0 ( 0.36)

and
−Ft +Gx +AGy −BFy + [F,G] = 0 (mod S). (37)

Equivalently, we define a column of 2-forms ω, a matrix of 2-forms α, and a matrix of
1-forms β, with

ω = αζ + β ∧ dζ, (38)
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where ζ is a column of 0-forms (pseudopotentials) as before. We require

dω ⊂ {ω, I}, (39)

which suggests
dω − ρ ∧ ω ⊂ I, (40)

where ρ is a matrix 1- form. This gives

dω − ρ ∧ ω = α ∧ dζ + (dα)ζ + dβ ∧ dζ − ρ ∧ (αζ + β ∧ dζ) ⊂ I

or
α− ρ ∧ β + dβ ⊂ I (41)

and
dα− ρ ∧ α ⊂ I (42)

which together give
(dρ− ρ ∧ ρ) ∧ β ⊂ I (43)

(ρ ∧ ρ 6= 0 in general because ρ is a matrix.)
This requires some supplementing in order to get Eqs. (35) to (37). We write

β = 1 dy −Adx−Bdt (44)

(1 is the unit matrix) and require A and B to be constant, so that dβ = 0. We also require
β ∧ β = 0, which gives Eq. (35). We also take

ρ = −Fdx−Gdt. (45)

A term in dy would be redundant, since we could replace it with β. Then

α = ρ ∧ β = −Fdxdy −Gdtdy + (FB −GA)dxdt. (46)

We require
ρ ∧ β + β ∧ ρ = 0, (47)

giving Eq. (36). Finally, Eq. (42) or Eq. (43) gives Eq. (37). We note that dζ may be
written as

dζ = ρζ + βζy ; (48)

then (mod I)
β ∧ dζ = β ∧ ρζ = −ρ ∧ βζ = −αζ

or ω = 0. It will be seen that, as in the terms AGy and BFy in Eq. (37), individual matrix
products now appear, not just in commutators as in the two-variable case.

For step (3), we assume functional dependence of the new field variables on the pseu-
dopotentials and old field variables as before, but now it appears necessary to assume
dependence also on some pseudopotential first derivatives, as will be seen in the treatment
of the KP equation discussed below.
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IV Kadomtsev-Petviashvili (KP) equation

This is the equation [9, 1]

3utt + 6(uux)x + uxxxx + 3uxy = 0. (49)

We write the ideal of forms as

(dudt− pdxdt)dy
(dpdt− rdxdt)dy
(dwdt− zdxdt)dy

(dpdx− 4
3
dzdt)dy(

dwdx+
3
2
updxdt+

1
4
drdt

)
dy +

3
4
dudxdt,

(50)

where we have defined p = ux, r = px = uxx, and z = −3
4ut = wx. If we annul these forms

and treat all dependent variables as functions of x, t, and y, we get

wt =
3
2
uux +

1
4
uxxx +

3
4
uy

wx = −3
4
ut,

the integrability conditions of which yield the KP equation, Eq. (49).
A PS for the KP equation was given by Morris several years ago [10]:

ζ1
x = ζ2

ζ2
x = ζ3 − 3

4
uζ1

ζ3
x = −3

4
uζ2 − (w − µ)ζ1 − 3

4
ζ1

y

ζ1
t = −ζ3 − 1

4
uζ1

ζ2
t =

1
2
uζ2 +

(
w − µ− 1

4
p
)
ζ1 +

3
4
ζ1

y

ζ3
t = −

(r
4

+
9u2

16

)
ζ1 +

(
w − µ+

1
4
p
)
ζ2 − 1

4
uζ3 +

3
4
ζ2

y,

(51)

where µ is a constant. These can be written in terms of forms, but that will not be done
here.

How does one find such a PS? It seems sufficient to assume a lower triangular structure
for A and B in Eqs. (35-37), then to explore that effect on the other matrices. The values
of the matrices for the PS given here are (from [10], corrected)

A =
3
4

 0 0 0
0 0 0
1 0 0

 , B = −3
4

 0 0 0
1 0 0
0 1 0

 , (52a)
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and

F =

 0 −1 0
(3/4)u 0 −1
w − µ (3/4)u 0

 , G =

 u/4 0 0
−w + µ+ p/4 −u/2 0
r/4 + 9u2/16 −w + µ− p/4 u/4

 . (52b)

Morris does not give a BT for the KP equation. This is possibly because he may have
assumed functional dependence on just the ζµ, whereas one must also include the ζµ

y, as
shown below.

To try to find a BT, we can simply assume that there exist new variables u′, p′, r′, w′,
and z′, which are functions of u, p, r, w, and z, the ζµ, and ζµ

y, and which satisfy the
original KP equation (Eq. (49)). This assumption leads to a straightforward, but very
messy, set of equations, which can indeed be solved to give a BT. But one can also
simplify the process by some reasonable assumptions based on scale.

We first define new variables which are ratios of the ζµ and the ζµ
y to ζ1:

α =
ζ2

ζ1
, β =

ζ3

ζ1
, γ =

ζ1
y

ζ1
, δ =

ζ2
y

ζ1
, ε =

ζ3
y

ζ1
. (53)

The reason for doing this is that previously found expressions for BT’s seem to be functions
of only such ratios, not the separate pseudopotentials. Since the PS is linear in the
pseudopotentials, we may consider one of them to set the scale, while the ratios appear in
the BT.

These ratios satisfy certain relations, derived from Eq. (51), and here expressed most
economically in terms of 1- and 2-forms:

dα =
(
β − α2 − 3

4
u
)
dx+

(
w − µ− p

4
+

3
4
uα+ αβ +

3
4
γ
)
dt+ (δ − αγ)dy, (54a)

dβ = −
(
w − µ+

3
4
uα+ αβ +

3
4
γ
)
dx+

(
ε− βγ

)
dy

+
[
− r

4
− 9u2

16
+

(
w − µ+

p

4

)
α+

3
4
δ + β2

]
dt,

(54b)

dydγ = (αγ − δ)dxdy + (ε− βγ)dtdy − 1
4
dudt+

1
4
pdxdt, (54c)

and
dydδ =

(3
4
uγ − ε+ αδ

)
dxdy +

(
− 3

4
δ +

r

4
− 1

2
pα+

3
4
αγ

)
dxdt

+
[(
w − µ− p

4

)
γ +

3
4
uδ + δβ +

3
4
γ2

]
dydt

−3
4
dtdγ − 3

4
dudx+

(
dw − 1

4
dp+

1
2
αdu

)
dt.

(54d)

Now we note that we may consider the field variables and the new variables from Eq. (53)
to have particular scales, as may be derived by inspection from Eqs. (49), (50), and (54).
Finally, by dimensional considerations we may note that combinations of variables having
the same dimension as u or u′ are simply u, β, α2,mα, and m2, where m is a dimensional
constant. Since we do not expect u′ to be a function of any derivatives higher than u
itself, we simply assume that u′ has the form

u′ = au+ bβ + cα2 + emα+ fm2, (55)
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where the coefficients a, b, c, e, f are simply numbers. Had we assumed that u′ was a
function of higher derivatives of u, then ultimately derivatives of order too high to accom-
modate would appear. Thus with this sort of argument we may work out the expected
form for u′ in terms of the given variables.

We also make the assumption, using the same type of analysis, that (k is a dimensional
constant)

w′ = gw + hγ + lk + np+ qmβ + vmu+ smα2 + tαβ + λα3 + θαu+ ψm2α+ ζm3, (56)

where g, h, l, n, q, v, s, t, λ, θ, ψ, and ζ are numbers. Now we use these quantities to define
the derivative quantities p′, r′, and z′, and require them satisfy the KP equation. We
find only one nontrivial set of values, that the constants in Eq. (55) are given by a =
−(1/2), b = −c = 2, e = f = 0. Then the BT takes the form

u′ = −1
2
u+ 2β − 2α2 (57)

which may be written as (if we put φ for ζ1)

u′ = u+
2φxx

φ
− 2φx

2

φ2
= u+ 2(lnφ)xx. (58)

The equations for the pseudotentials may be written in the original form Eq. (51).
These equations may be boiled down to the form:

φt = −uφ− φxx,

φy = −pφ− 4
3
(w − µ)φ− 2uφx −

4
3
φxxx.

(59)

Thus, if a (seed) solution u (with corresponding p and w) to the KP equation is known, and
if φ is a solution of the linear Eqs. (59), then a BT is given by Eq. (58). Essentially, these
equations are the same as found by Chen [1], who found the BT somewhat by inspection.
The function φ is the τ -function used by some authors.

If we take the trivial seed solution u = 0, we get an instant set of solutions given by,
for some function f(a),

φ =
∫
daf(a) exp[ax+

4
3
(µ− a3)y − a2t]. (60)

Solutions found in this manner may be compared with the solutions given by Ablowitz
and Segur [11] and by Chen [1].

It may be remarked that inspection is much easier than this method. That is true
enough, but one may not always be able to find a BT by inspection.

V. Davey Stewartson (DS) equation(s)

We write the DS equation(s) [12] in this form:

qr = 4γuv

qt = 2(quu + qvv) + 4εq(γuu + γvv)
−rt = 2(ruu + rvv) + 4εr(γuu + γvv),

(61)
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where ε = ±1. Generally, in this notation, γ is taken as real, r = q∗, and t is pure
imaginary. u and v may be real or may be mutual complex conjugates. Eq. (61) may be
converted to forms treated by other authors, as shown in the Appendix.

Again we know a linear PS, written as follows (generalized from [13])

Av =
1
2
(ζA+ qB)

Bu =
1
2
(µB − εrA)

At = 2Auu − 2µAu +Bqv − qBv

+ 4εAγuu +
(
λ+

ζ2

2

)
A+

ζ

2
qB

−Bt = 2Bvv − 2ζBv + εrAu − εAru

+ 4εBγvv +
(
− λ+

µ2

2

)
B − εµ

2
rA

(62)

or alternatively (because the original equations are invariant with respect to interchange
of u and v):

Cu =
1
2
(τC + qD)

Dv =
1
2
(ψD − εrC)

Ct = 2Cvv − 2ψCv +Dqu − qDu

+ 4εCγvv +
(
χ+

τ2

2

)
C +

τ

2
qD

−Dt = 2Duu − 2τDu + εrCv − εCrv

+ 4εDγuu +
(
− χ+

ψ2

2

)
D − εψ

2
rC,

(63)

where ζ, µ, λ, τ, ψ, and χ are constant.
Can we find a BT by using either of these PS, using the above method? If we assume

q′, r′ and γ′ to be functions of q, r, γ, A,B,Au, Bv, C,D,Cv, Du, γu, γv, we find that does
not work.

However, there is a treatment of the DS equation in the literature [14], [15], using the
Zakharov-Shabat (ZS) ”dressing method” [16], which gives partial results. We outline a
version of the ZS method briefly as follows. Assume we have given two equations for a
variable φ (which may be regarded as a column pseudopotential in the WE method), in
terms of two independent linear operators T1 and T2 (α and β are constant):

T1φ = αφ, T2φ = βφ. (64)

Thus, T1T2φ = αβφ = T2T1φ, so
[T1, T2]φ = 0. (65)

We require
[T1, T2] = 0, (66)

independent of φ. Eq. (66) is the (set of) field equation(s) which we wish to study.
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We now assume a new φ̄ related to the old φ by

φ̄ = Gφ (67)

with new operators T̄1, T̄2, with T̄1φ̄ = ᾱφ̄, T̄2φ̄ = β̄φ̄. Then [T̄1, T̄2] = 0 is the set of field
equations in terms of new field variables, and is to be satisfied when Eq. (66) is satisfied.
We can arrange this by writing (where ρ and ξ are constant)

T̄1G = ξGT1, T̄2G = ρGT2 (68)

and then we have
[T̄1, T̄2]G = T̄1(T̄2G)− T̄2(T̄1G)

= T̄1(ρGT2)− T̄2(ξGT1)
= ξρG[T1, T2] = 0

as desired. Eqs. (68) constitute a BT, relating T̄1 and T̄2 to T1 and T2 and the old and new
field variables. If one is given the old operators Ti in terms of the old field variables, and
the new operators T̄i are to have the same form in terms of the new field variables, then
these equations in principle can be solved for G and for the BT field variable relations.

The operators T1 and T2 may have matrix, derivative, or integral terms. Especially
with the latter, global properties are usually considered in the literature. However, we
treat these equations purely locally here. Where integrals of variables occur, we treat
them as indefinite integrals and usually define them as new variables.

The ZS approach easily allows the use of more than two independent variables. How-
ever, if one is confronted with the field equations themselves, there is no automatic pre-
scription which describes how to find the linear operators T1 and T2. The absence of this
prescription makes the method somewhat different from the WE method discussed above.
However, if one is able to find T1 and T2, then this method has some definite advantages,
as will be seen below for the DS equation.

The following prescription gives the DS equation(s):

T1 =
∂

∂x
+A

∂

∂y
− P,

T2 =
∂

∂t
−B + 2P

∂

∂y
− 2A

∂2

∂y2
,

(69a)

where
A =

(
1 0
0 −1

)
, P =

(
0 q
−εr 0

)
, B =

(
4εγvv 2qv
2εru −4εγuu

)
. (69b)

In working this out, we have defined the new variable γ defined by qr = 4γuv so that we
can express the integrals

∫
qrdu and

∫
qrdv in terms of derivatives of γ. We also have

defined new independent variables u = x+ y and v = x− y. If one expands Eq. (65), one
finds the earlier PS Eq. (62), but with the specialization α = β, ξ = ρ = 1.

We now find by writing out Eq. (68) and going through some calculation that we can
write G as

G =
(

1 0
0 λ

)
∂

∂y
+

(
εηv (1/2)(λq̄ − q)

(ε/2)(r̄ − λr) −λεηu

)
, (70)
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where λ is a constant and where η = γ̄− γ. Furthermore, we have the following equations
relating old and new field variables; these constitute the formal BT. The first two of these,
constituting the ”spatial part” of the BT, may be found in ref. [14], [15]; the last one, the
”time part”, does not appear to be written out and thus is presented for the first time
here.

q̄u = −εq̄ηu + λ−1(qv − εqηv)
r̄v = −εr̄ηv + λ(ru − εrηu)

ηt = −2ηuu + 2ηvv − 2εηu
2 + 2εηv

2

− 4γuu + 4γvv + λ−1qr̄ − λrq̄.

(71)

From the first two of these, one can express q̄ and r̄ as follows:

q̄ = (1/λψ)
∫
du (ψqv − qψv)

r̄ = (λ/ψ)
∫
dv (ψru − rψu),

(72)

where η = ε lnψ. One now sees from the third equation that ψ satisfies the integro-
differential equation

ψt = 2(ψvv − ψuu) + 4εψ(γvv − γuu)

+ εq

∫
dv (ψru − rψu)− εr

∫
du (ψqv − qψv).

(73)

This equation has not yet been explored; however, one can see that it is the analog to
Eq. (59) for the KP equation.

One sees that the assumption made in the WE method, that the new field variables are
functions of the old variables and the pseudopotentials, apparently does not apply here.
The more general form Eq. (72) is suggestive of possible approaches to other equations,
but does not seem to provide an unambiguous method of searching for BTs of arbitrary
equations.

VI. General relativity

We already know two BTs for the Ernst equation, the equation found if one assumes two
symmetries (stationary axisymmetry) for the general relativity equations [6], [17].

In general relativity, if one writes out the full equations, there are many variables–the
10 metric coefficients, the 40 Christoffel symbols, and any variables associated with the
presence of matter or nongravitational fields. So in some ways it is more economical to
work with differential forms instead of the individual variables. It is possible to write the
vacuum equations, for the cases of one symmetry and no symmetry (general) in terms of
sets of forms. The forms for one symmetry are given in [3], [18], those for the general
vacuum equations in [19]. Interestingly, there is not an obvious relation between the two.

One then hopes to be able to use some such scheme as WE or ZS in order to work
with differential forms.

A PS is known for the general case [19]. It was used to find a very restricted BT,
which produced only a limited class of already known solutions (Kerr-Schild). It can be
generalized slightly [20]. A PS is not known for the single symmetry case.
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In summary: the Wahlquist-Estabrook method, including the Ansatz of functional
dependence to get the BT, works well for two–variable systems. It may also work for
three–variable systems, but apparently not consistently. The ZS approach may need to
be used; it may be possible to combine the two approaches. The WE approach can be
formulated in terms of differential forms; while is probably not necessary for most systems,
it may be important for use in general relativity; but results in that area have not yet
been obtained.

VII. Appendix

For the Davey-Stewartson equation(s), we present various versions here.
In Eq. (61), we first change the variables as follows. Put γ = −ηβ, t = −iητ, ε =

ηλ, x = a2(u − v)/2, y = a(u + v)/2, a2 = ξ, κ = −ξη, where ξ, η, κ, λ = ±1. Then
Eq. (61) takes the form

qr = ηβxx + κβyy

iqτ = ηqxx − κqyy − 2λq(ηβxx − κβyy)
−irτ = ηrxx − κryy − 2λr(ηβxx − κβyy).

(74)

In the following, we always have r = q∗ and η = 1.
Ablowitz and Segur [11] is obtained by putting φ = −4βx, σ = λ, τ = −t, q = A/

√
2

and interchanging x and y.
Cheng, Li, and Tang [21] is recovered by writing α2 = λ = −κ, τ = t, and

ψ = α2βxx + βyy

a = i(βxx + 2αβxy + α2βyy)

b = i(−βxx + 2αβxy − α2βyy).

(75)

Here, DS I is the case α = λ = −κ = 1, while DS II is the case α = i, λ = −κ = −1.
Levi, Pilloni, and Santini [22] is found by putting κ = 1, z = y, T = τ, and

Γ = −λ(βxx − βzz + 2iβxz). (76)

Morris [13] results from q = A, t = −τ, λ = −κ = 1, and

φ = (1/2)(βxx + 2βxy + βyy)
ψ = (1/2)(−βxx + 2βxy − βyy).

(77)

Finally, Dodd, Eilbeck, Gibbon, and Morris [23] is recovered by putting λ = 1, φ =
−(4/3)βx, ζ = ±(2/3)q, τ = −(1/2)t and by interchanging x and y.
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A. Dold and B. Eckmann, eds. (Lecture Notes in Mathematics No. 515) Springer, Berlin, 1976, 69-79.
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mations in 2 + 1 Dimensions, Inverse Problems, 1985, V.1, 33-56.

[15] Boiti M., Leon J., Martina L. and Pempinelli F., Solitons in Two Dimensions, in Integrable Systems
and Applications, M. Balabane, P. Lochak, and C. Sulem, eds. (Lecture Notes in Physics No. 342),
Springer, Berlin, 1989, 31-48.

[16] Zakharov V.E. and Shabat A.B., A Scheme for Integrating the Nonlinear Equations of Mathematical
Physics by the Method of the Inverse Scattering Problem. I, Func. Anal. Appl., 1974, V.8, 226-235.
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