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Abstract

Consider the operator pencil Lλ = A− λB − λ2C, where A, B, and C are linear, in
general unbounded and nonsymmetric, operators densely defined in a Hilbert space H.
Sufficient conditions for the existence of the eigenvalues of Lλ are investigated in the
case when A, B and C are K-positive and K-symmetric operators in H, and a method
to bracket the eigenvalues of Lλ is developed by using a variational characterization
of the problem (i) Lλu = 0. The method generates a sequence of lower and upper
bounds converging to the eigenvalues of Lλ and can be considered an extension of the
Temple-Lehman method to quadratic eigenvalue problems (i).

1 Introduction

Let H be a separable complex Hilbert space with the inner product and norm

(x, y), ||x|| = (x, x)1/2 , (x, y ∈ H) (1)

and consider in H the nonlinear eigenvalue problem

Ax− λBx− λ2Cx = 0 (2)

where A and C are K-p.d. operators with DC ⊇ DA, DA is dense in H, and B is an
operator with DB ⊇ DC . Recall [1–3] that by the definition of A and C there exists a
closable operator K with DK ⊇ DC mapping DA onto a dense subset KDA of H and
positive constants α1, α2, β1, β2 such that

(Ax,Kx) ≥ α1||x||2 , (x ∈ DA) (3)

||Kx||2 ≤ α2(Ax,Kx) , (x ∈ DA) (4)

(Cx,Kx) ≥ β1||x||2 , (x ∈ DC) (5)

||Kx||2 ≤ β2(Cx,Kx) , (x ∈ DC) (6)

The class of K-p.d. operators {P} contains, among others, the following families of
mappings:
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(a) Positive definite operators; in this case K is the identity map or, if P is also self-adjoint,
K can be any root of P .
(b) Closeable and densely invertible1 operators; in this case we let K = P .
(c) The operator P of the form P = −S2j+1 or P = S2j+2 where for some i, 0 ≤ i < j,
the operator S2(j+i+1) is positive definite; in this case we let K = S2i+1 or K = S2i+2,
provided that K so defined is closable and KDP is dense in H. To this class belong,
in particular, ordinary differential operators of odd and even order and weakly elliptic
partial differential operators of odd and even order which in general are not self-adjoint [2].
(d) A subclass of bounded and unbounded symmetrizable operators investigated by a
number of authors [2, 4].

Let D[A] be the set DA endowed with the new metric

(x, y)A = (Ax,Ky), ||x||2A = (x, x)A, (x, y ∈ DA) (7)

and denote by HA the completion of D[A] in the metric (7). Similarly, let D[C] be the set
DC with the metric

(x, y)C = (Cx,Ky), ||x||2C = (x, x)C , (x, y ∈ DC) (8)

and define HC to be the completion of D[C] in the metric (8). One can show that the
space HA is contained in H in the sense of uniquely identifying the elements of HA with
certain elements in H and clearly, since C is K-p.d., the above assertion is valid also for
the space HC , i.e., HC ⊆ H. Let H1 = H ×HC be the Cartesian product space, with the
norm and inner product defined by

(u, v)1 = (x, p) + (y, q)C

(u =

(
x
y

)
and v =

(
p
q

)
∈ H ×HC) (9)

||u||1 = (u, u)1/2
1 =

(
||x||2 + ||y||2C

)1/2
. (10)

Clearly, H1 is a Hilbert space and, since HC is a subset of H, it follows that H1 ⊆ H ×H
in the sense mentioned above. Now, let T : DA×D[C] ⊆ H1 → H1 be the operator matrix

T =

(
A 0
0 I

)
, T

(
x
y

)
=

(
Ax
y

)
, (u =

(
x
y

)
∈ DA ×D[C]). (11)

Similarly, let us define in H1 the operators

S =

(
B C
I 0

)
, S : DB ×D[C] ⊆ H1 → H1, (12)

K̂ =

(
K 0
0 I

)
, K̂ : DK ×D[C] ⊆ H1 → H1. (13)

1An operator P will be called invertible if it has a bounded inverse, densely invertible if it is invertible
and its range RP is dense in H, and continuously invertible if it is densely invertible and RP = H.
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Observe that the quadratic eigenvalue problem (2) is equivalent to the system

Ax− λBx− λCy = 0
y − λx = 0

(14)

which, in view of (11) and (12), is equivalent to the linear equation

Tu− λSu = 0 (15)

in the sense that if xi is a solution of (2) corresponding to λ = λi, then ui =

(
xi

yi

)
with

yi = λixi is a solution of (15) and, conversely, if ui is a solution of (15) corresponding to
λ = λi, then yi = λixi and xi is a solution of (2).

Proposition 1. The operator T defined by (11) is K̂-p.d. in the space H1 = H × HC ;
i.e., T satisfies the following conditions:

(a) DT is dense in H1.
(b) DK̂ ⊇ DT and K̂DT is dense in H1.
(c) K̂ is closable in H1.
(d) There exist positive constants γ1, γ2 such that

(Tu, K̂u)1 ≥ γ1||u||21 , (u ∈ DT ), (16)

||K̂u||21 ≤ γ2(Tu, K̂u)1 , (u ∈ DT ). (17)

Proof. (a) Let u =

(
x
y

)
be an arbitrary element in H1 = H ×HC . Since DA is dense

in H, there exists a sequence {xn} ⊂ DA which converges to x in the H-metric. Similarly,
since DC is dense in HC , there exists a sequence {yn} ⊂ DC which converges to y in the

HC-metric. Hence, if we define a sequence in DT = DA ×D[C] by un =

(
xn

yn

)
, then

lim
n→∞

||un − u||21 = lim
n→∞

(||xn − x||2 + ||yn − y||2C) = 0.

(b) By definition, K̂DT = KDA × D[C] where KDA is dense in H. Hence, using a
similar argument as in part (a), one can show that K̂DT is dense in H1. Moreover, since
DK ⊇ DA, it follows that

DK̂ = DK ×D[C] ⊇ DA ×D[C] = DT . (18)

(c) Let un =

(
xn

yn

)
be a sequence in DK̂ , and f =

(
f1

f2

)
an element in H1 such

that the following conditions hold:

lim
n→∞

||un||1 = 0, (19)

lim
n→∞

||K̂un − f ||1 = 0. (20)

From (20) we obtain lim
n→∞

√
||Kxn − f1||2 + ||yn − f2||2c = 0 which implies that

Kxn → f1 ∈ H, (21)
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yn → f2 ∈ HC , (22)

On the other hand, from (19) we deduce that

xn → 0 in the H-norm, and (23)

yn → 0 in the HC-norm. (24)

In view of (21) and (23) it follows that f1 = 0, since K is closable in H. Moreover, from

(22) and (24) it follows that f2 = 0. Hence, f =

(
f1

f2

)
= 0, and K̂ is closable in H1.

(d) If u =

(
x
y

)
∈ DT , then (Tu, K̂u)1 = (Ax,Kx) + (y, y)C and, in view of (3), we

obtain the inequality
(Tu, K̂u)1 ≥ α1||x||2 + ||y||2C . (25)

Let γ1 = min{α1, 1}; then from (25) and (10) it follows that

(Tu, K̂u)1 ≥ γ1||u||21 , (u ∈ DT ). (26)

Since ||K̂u||21 = (Kx, Kx) + (y, y)C , it follows from (4) and (11) that

||K̂u||21 ≤ α2(Ax,Kx) + (y, y)C ≤ γ2(Tu, K̂u)1 , (u ∈ DT ), (27)

where γ2 = max{α2, 1}.

Let u =

(
x
y

)
and v =

(
p
q

)
be elements of the space DT = DA×D[C] ⊆ H×HC =

H1 and let us introduce in DT a new norm and inner product

(u, v)2 = (Tu, K̂v)1 = (x, p)A + (y, q)C (28)

||u||2 =
√
||x||2A + ||y||2C . (29)

Define by D[T ] the linear set DT endowed with the metric || · ||22 = (·, ·)2, and observe that

D[T ] = D[A]×D[C]. (30)

In view of (16), (17) and the fact that T is K-p.d. in H1, we have the inequalities

||u||2 ≥
√

γ1||u||1 , (u ∈ DT ) (31)

||K̂u||1 ≤
√

γ2||u||2 , (u ∈ DT ) (32)

Clearly, DT satisfies all the properties of a Hilbert space, with the possible exception of
completeness. Let us denote by H2 the completion of D[T ] in the metric (29).

Proposition 2.
(a) H2 = HA ×HC .
(b) H2 is contained in H1 in the sense of identifying uniquely the elements from H2

with certain elements in H1.
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(c) K̂ can be extended to a bounded operator K̂0 mapping all of H2 to H1 such that
K̂ ⊂ K̂0 ⊂ K̂, where K̂ denotes the closure of K̂ in H1.

(d) T has a unique closed K̂0-p.d. extension T0 such that T0 ⊇ T , T0 has a bounded
inverse T−1

0 defined on all of H1 = RT0 , and the inequalities (31) and (32) remain valid in
H2 in the form

||u||2 ≥
√

γ1||u||1 , (u ∈ H2) (33)

||K̂0u||1 ≤
√

γ2||u||2 , (u ∈ H2). (34)

Proof. The proof of part (a) follows from (30) and the fact that HA and HC are the
completions of the spaces D[A] and D[C] in the norms || · ||A and || · ||C , respectively.
By Proposition 1, the operator T is K̂-p.d. in H1. Hence, the proof of parts (b), (c),
and (d) can be derived from Lemma 1.2 of Petryshyn [3], provided the spaces H2, H1

and the operator K̂ in Proposition 2 are identified with H0, H, and K, in Lemma 1.2,
respectively.

In the sequel we shall assume, when necessary, that the operators K̂ and T have already
been extended and the notation T0 and K̂0 will not be used. Note that in applications it
is often not necessary to extend the operators T and K̂.

2 The equaivalent linear problem Tu− λSu = 0

Definition 1. The quadratic eigenvalue problem

Ax− λBx− λ2Cx = 0, (35)

where A and C are K-p.d. with DA ⊆ DC ⊆ DB and B is K-symmetrric on DC , i.e.,

(Bx, Ky) = (Kx, By) , (x, y ∈ DC) (36)

will be called K-real.

Proposition 3. If the quadratic eigenvalue problem (35) is K-real in H, then the equiv-
alent linear problem

Tu− λSu = 0 (37)

defined by (11)-(13) is K̂-real in H1 = H ×HC , i.e. T is K̂-p.d. and S is K̂-symmetric
on DT .

Proof. In view of Proposition 1, only the K̂-symmetry of S needs to be verified. To this

end let u =

(
x
y

)
and v =

(
p
q

)
be elements in DT ⊆ H1 and note that

(Su, K̂v)1 = (Bx + Cy, Kp) + (x, q)C = (Bx, Kp) + (Cy, Kp) + (Cx,Kq) (38)

Since by definition the operators B and C are K-symmetric on DA ⊆ H, the above
equation yields the identity

(Su, K̂v)1 = (Kx, Bp + Cq) + (Cy, Kp) = (K̂u, Sv)1 , (u, v ∈ DT ) (39)

which proves the K̂-symmetry of S on DT .
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Let us assume that the eigenvalue problem (35) is K-real, which implies that problem
(37) is K̂-real. A value of the complex parameter λ for which (37) has a nontrivial solution
u ∈ DT will be called an eigenvalue of (37), and u its corresponding eigenfunction. The set
of all eigenvalues of (37) will be denoted by pσ(37) and called the point spectrum of (37).
By the multiplicity of λ we shall mean the number of linearly independent eigenfunctions
which correspond to λ. Since T , S are K̂-symmetric, it follows [5] that the eigenvalues
of (37) are real, and the eigenfunctions u1, u2 corresponding to distinct eigenvalues λ1, λ2

are orthogonal in the sense that (Tu1, K̂u2)1 = 0 . Since the space H1 is separable, it
follows that the point spectrum of (37) is countable.

Suppose the operators K and Lλ ≡ A−λB−λ2C are closed with DK = DC , and that
Lλ : DA ⊆ H → H is a bijection for all λ, except possibly for a discrete set of eigenvalues
of the problem (A − λB − λ2C)x = 0. Under the above assumptions, it is not difficult
to show that the equivalent linear problem Tu − λSu = 0 in H1 = H ×HC satisfies the
following conditions:

(α): The operator Gλ = T − λS : DT ⊆ H1 → H1 is continuously invertible for all
λ /∈ pσ (37).

(β): The spectrum σ(N) of the operator N = T−1S : D[T ] ⊆ H2 → D[T ], contains
only eigenvalues of finite multiplicity with zero as its sole possible limit point.

Let pσ(Lλ) = {λi : i = 1, 2, ..} denote the point spectrum of the operator Lλ, with the
eigenvalues ordered according to increasing magnitude and repeated as many times as their
multiplicity indicates. Let {xi : i = 1, 2, . . .} be the set of corresponding eigenfunctions,
normalized in the sense that ||xi||2A + λ2

i ||xi||2C = 1. Then, using certain results from
the theory of linear K-real eigenproblem Tu − λSu = 0, we may derive the following
theorems, which extend the corresponding results [6–8] obtained for the case when C is
the identity operator and A,B are self-adjoint, positive definite, or compact operators.
(Related results, under different assumptions on the operators A,B,C, have been obtained
by other authors) [9–15].

Theorem 1. Assume that the eigenproblem (35) is K-real, that Lλ : DA → H is a bijec-
tion for all λ /∈ pσ(Lλ) and that the operators Lλ and K are closed with DK = DC . Then
the eigenvalues and eigenfunctions of problem (35) have the variational characterization

1
|λn|

= sup
(x,y)T∈DA×DC

{|E(x, y)| : (x, xi)A + λi(y, xi)C = 0, 1 ≤ i ≤ n− 1} = E(xn, λnxn),

(40)

where E(x, y) =
(Bx, Kx) + 2Re(Cx,Ky)

(Ax,Kx) + (Cy, Ky)
.

Moreover, the eigenvalues found by this variational process exhaust entirely the set pσ(Lλ).

Proof. By hypothesis the linearized eigenproblem (37) is K̂-real and satisfies conditions
(α) and (β). It follows from the theory of linear K-real eigenproblems [3, 5] that the eigen-
pairs (λi, ui) of problem (37), normalized in the sense ||ui||2 = 1, satisfy the variational
principle

1
|λn|

= sup
u∈DT

{
|(Su, K̂u)1|
(Tu, K̂u)1

: (Tu, K̂ui)1 = 0, 1 ≤ i ≤ n− 1

}
=
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|(Sun, K̂un)1| / (Tu, K̂un)1 (40a)

and the eigenvalues determined by (40a) exhaust entirely the set pσ(37). Thus, the validity
of the last assertion of Theorem 1 follows from the fact that pσ(37) = pσ(Lλ). If we let
u = (x, y)T , u ∈ D(T ) = DA×DC , then expanding the inner products in (40a) and using
the K-symmetry property of the operator C, we obtain the expressions

(Su, K̂u)1 = (Bx, Kx) + (Cy, Kx) + (Cx,Ky) = (Bx, Kx) + 2Re(Cx,Ky)

(Tu, K̂u)1 = (Ax,Kx) + (Cy, Ky)

||ui||22 = ||xi||2A + λ2
i ||xi||2C (Tu, K̂ui)1 = (x, xi)A + λi(y, xi)C .

Substituting the above into (40a) yields the variational formula (40).

Lemma 1. Assume the hypothesis of Theorem 1.
(a) Suppose S and S+ are K̂-symmetric operators, T is K̂-p.d., and

|(S+u, K̂u)| ≥ |(Su, K̂u)|

for u ∈ DT . Then the eigenvalues λ+
i and λi of the corresponding eigenproblems

Tu− λ+S+u = 0 and Tu− λSu = 0 satisfy the inequality |λ+
i | ≤ |λi|, i=i,2,...

(b) Suppose that T and T ∗ are K̂-p.d. operators with DT = D∗
T , S is K-symmetric on

DT , and
(T ∗u, K̂u) ≥ (Tu, K̂u)

for u ∈ DT . Then the eigenvalues λ∗i and λi of the corresponding eigenproblems
Tu− λSu = 0 and T ∗u− λ∗Su = 0 satisfy the inequality |λ∗i | ≥ |λi|, i=1,2,...
Proof. The proof of parts (a) and (b) is a direct consequence of the variational principle
(40) in Theorem 1.

Theorem 2. Assume the hypothesis of Theorem 1 and let {ui : 1, 2, . . .} be the set of
eigenfunctions, orthonormal in H2, of the K̂-real eigenproblem (37). If u ∈ DT , then
T−1Su has the expansion

T−1Su =
∞∑
i=1

(Su, K̂ui)1ui (41)

which converges in the H1 and H2-norm.

Proof. The result follows directly from the corresponding eigenfunction expansion theo-
rem [3, 5] for linear K-real eigenvalue problems.

3 Iterative method

Let f0 =

(
x0

y0

)
be an element in DT such that f0 /∈ N(S) (the null space of S), and

denote by fk =

(
xk

yk

)
the iterant at the k-th step of our process; then the succeeding

iterant fk+1 is obtained by solving the equation Tfk+1 = Sfk, i.e.,(
A 0
0 I

)(
xk+1

yk+1

)
=

(
B C
I 0

)(
xk

yk

)
, (k ≥ 0). (42)



ON THE SPECTRAL THEORY OF OPERATOR PENCILS 363

Now, let us determine the constants

ak = (Sfk−i, K̂fi)1 = (Bxk−i,Kxi) + (Cyk−i,Kxi) + (Cxk−i,Kyi)

(0 ≤ i ≤ k, k = 1, 2, . . .). (43)

Note that the values of (Sfk−i, K̂fi)1 depend on k but not on i, since from the K̂-symmetry
of S and T it follows that (Sfk, K̂f0)1 = (Sfk−1, K̂f1)1 = · · · = (Sf0, K̂fk)1. Also, note
that the elements of the sequence {fk} cannot vanish, since f0 /∈ N(S) implies that
fn /∈ N(S) for n ≥ 0. Indeed, if Sfn 6= 0 for n < k, then fk = T−1Sfk−1 6= 0, and from
the identity (Sfk, K̂fk−1)1 = (K̂fk, Sfk−1)1 = (Tfk, K̂fk)1 > 0 it follows that Sfk 6= 0.
Thus, by induction, it follows that fn /∈ N(S) for all n ≥ 0.

Let H i
2 be the space spanned by the eigenfunction ui and denote by (H i

2)
⊥ the orthog-

onal complement of H i
2 in H2.

Proposition 4. Let ci = (f0, ui)2, i = 1, 2, . . . be the Fourier coefficients of f0 with respect
to the orthonormal set of eigenfunctions {ui} in H2. Then,

(a) fk may be represented by the following series, converging in the H1 and H2 metrics:

fk =
∞∑
i=1

ciλ
−k
i ui , (k = 0, 1, . . .) (44)

(b) the constants ak, determined by (43), are of the form

ak =
∞∑
i=1

|ci|2λ−(k+1)
i , (k = 0, 1, . . .) (45)

Proof. (a) Applying Theorem 2 we may express fk in the form

fk = T−1Sfk−1 =
∞∑
i=1

(Sfk−1, K̂ui)1ui , (k = 1, 2, . . .) (46)

where the series converges in the H1 and H2 metrics. Now, let us show that the following
identity is valid

(Sfk−1, K̂ui)1 = ciλ
−k
i , (k = 1, 2, . . .) (47)

For k = 1 using the K̂-symmetry of S and T , we obtain

(Sf0, K̂ui)1 = (K̂fo, Sui)1 = λ−1
i (K̂f0, Tui)1 = λ−1

i (Tf0, K̂ui)1 = ciλ
−1
i .

Suppose (47) is valid for n < k, then

(Sfk, K̂ui)1 = λ−1
i (K̂fk, Sui)1 = λ−1

i (Sfk−1, K̂ui)1 = ciλ
−(k+1)
i .

Hence, identity (47) is valid by induction and substituting it into (46) completes the proof
of part (a).

(b) Recall that the operator K̂, understood in the extended sense, is a continuous
mapping from H2 into H1 and that the series (44) is convergent in the H1 and H2 metrics.
Thus, applying the expansion (44) to the last term in the identity

ak = (Sfk, K̂f0)1 = (Tfk+1, K̂f0)1 = (K̂fk+1, T f0)1,
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we obtain

ak =
∞∑
i=1

ciλ
−(k+1)
i (K̂ui, T f0)1 =

∞∑
i=1

|ci|2λ−(k+1)
i , (k = 0, 1, . . .). (48)

Let wk = a2k−1/a2k+1 and note that by applying (45) we may express wk in the form

wk =
∞∑
i=1

|ci|2λ−2k
i /

∞∑
i=1

|ci|2λ−2(k+1)
i , (k = 1, 2, . . .). (49)

Theorem 3. Assume the hypothesis of Theorem 1 and suppose that |λr| < |λr+1| for
some positive integer r. If f0 is chosen from the space

f0 ∈ D[T ] ∩ [∩r−1
i=1 (H i

2)
⊥], f0 /∈ (Hr

2)⊥, r ≥ 1, (50)

then the following statements are true:
(a) the sequence {√wk} converges monotonically from above to |λr|,
(b) sk = λ2k

r f2k, k = 1, 2, . . . converges in the H2-metric to an eigenfunction crur ∈ Hr
2 .

Proof. (a) To show monotonicity of the sequence {wk}, let zk ∈ DT be defined by

zk = a2k+3fk − a2k+1fk+2 , (k = 1, 2, . . .)

Then, 0 ≤ (Tzk, K̂zk)1 = a2k+3(a2k+3a2k−1 − a2
2k+1)

which yields

0 ≤ (a2k−1/a2k+1)− (a2k+1/a2k+3) ≡ wk − wk+1 , (k = 1, 2, . . .)

To prove convergence, we may use (48) to express wk = a2k+1/a2k−1 in the form

wk =
∞∑
i=1

|ci|2λ−2k
i /

∞∑
i=1

|ci|2λ−2(k+1)
i , (k = 1, 2, . . .). (51)

Using the simplified notation, Λi = λ2
i , and the fact that by hypotesis c1 = c2 = . . . =

cr−1 = 0, we deduce from (51) the expression

wk = Λr
P (k)
Q(k)

, (k = 1, 2, . . .), (52)

where P(k) and Q(k) are the series

P (k) =
∞∑
i=r

|ci|2(Λr/Λi|)k, Q(k) =
∞∑
i=r

|ci|2(Λr/Λi)k+1

From Bessel’s inequality
∞∑
i=r

|ci|2 ≤ ||f0||22 and the fact that (Λr/Λi) < 1 for i > r, it follows

that the series P (k) and Q(k) are uniformly convergent with respect to the parameter k,
and their difference may be expressed in the form

P (k)−Q(k) =
∞∑
i=r

|ci|2(Λr/Λi)k − (Λr/Λi)k+1) ≤
∞∑

i=r+1

|ci|2(Λr/Λi)k
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≤ (Λr/Λr+1)k||f0||22 , (k ≥ 1). (53)

Since P (k) ≥ Q(k) ≥ |cr|2 > 0, it follows from (53) that [P (k) − Q(k)] → 0 and
P (k)/Q(k) → 1 as k →∞. Therefore, from (52) it follows that wk converges to Λr = λ2

r .
(b) By Proposition 4, Eq.(44), the elements of the sequence sk = λ2k

r f2k, k = 1, 2, . . .
may be represented by the series

sk = λ2k
r

∞∑
i=r

ciλ
−2k
i ui =

∞∑
i=r

ci(Λr/Λi)kui , (k = 0, 1, . . .)

convergent in H1 and H2-metrics. Hence, due to the orthonormality of the eigenvectors
ui in H2, i = 1, 2, . . ., it follows that

||sk − crur||22 = ||
∞∑

i=r+1

ci(Λr/Λi)kui||22 =
∞∑

i=r+1

|ci|2(Λr/Λi)2k.

Applying Bessel’s inequality and the fact that by hypothesis Λr < Λr+1 ≤ Λr+2 ≤ . . ., we
obtain the error estimate

||sk − crur||22 ≤ ||f0||22(Λr/Λr+1)2k , (k = 1, 2, . . .).

Thus, it follows that the sequence {sk} converges in the H2-metric to an eigenfunction
crur ∈ Hr

2 , with the error estimate given above.

Now, let us assume that a lower bound lr+1 for the eigenvalue |λr+1| can be determined
by some method such as, for example, suggested by Lemma 1. Then, using the iterative
process (43), we can derive a sequence of lower bounds that converges to |λr|.

Theorem 4. Assume the hypothesis of Theorem 1. If lr+1 is a lower bound for |λr+1|
such that for some positive integer N we have

√
wN ≤ lr+1 ≤ |λr+1|, then

Λr ≥ (l2r+1 − wk)wk+1/(l2r+1 − wk+1)

for k ≥ N and the sequence of lower bounds converges to Λr as k →∞.
Proof. The proof of the above theorem is based on the corresponding results for linear
K-real eigenvalue problems (see [5], p.207).

Theorems 3-4 allow us to bracket the eigenvalues of a quadratic eigenvalue problem
(35) Lλx = 0 by a procedure which is similar to the Temple-Lehman method for linear
eigenvalue problems Mu − λNu = 0. In that sense the above results may be considered
an extension of the Temple-Lehman method to nonlinear (quadratic) eigenvalue problems
(35), where A,B,C are symmetrizable operators in H. Important extensions and applica-
tions of the Temple-Lehman method to linear problems Mu − λNu = 0, where M and
N are partial differential operators, may be found in the work of F. Goerisch and H.
Haunhorst [16].
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