Nonlinear Mathematical Physics 1995, V.2, N 3-4, 367-373.

Lie Algebras and Superalgebras Defined

by a Finite Number of Relations:
Computer Analysis

V.P. GERDT and V.V. KORNYAK

Laboratory of Computing Techniques and Automation,
Joint Institute for Nuclear Research, 141980 Dubna, Russia

1

Finitely presented algebras are determined by a finite number of generators subject a finite
number of relations having a form of polynomials in the algebra. The investigation of
finitely presented Lie (super)algebras is one of the most important problems of combi-
This problem is of great practical importance covering applications
ranging from mathematical physics, e.g., in the theory of integrable nonlinear partial dif-
ferential equations [2], to mathematics and theoretical computer science, e.g., in studying
the word problem, generally algorithmically unsolvable, in noncommutative and nonasso-

natorial algebra [1].

Abstract

The presentation of Lie (super)algebras by a finite set of generators and defining
relations is one of the most general mathematical and algorithmic schemes of their
analysis. It is very important, for instance, for investigation of the particular Lie
(super)algebras arising in different (super)symmetric physical models. Generally, one
can put the following question: what is the most general Lie algebra or superalgebra
satisfying to the given set of Lie polynomial equations? To solve this problem, one
has to perform a large volume of algebraic transformations which sharply increases
with growth of the number of generators and relations. By this reason, in practice,
one needs to use a computer algebra tool. We describe here an algorithm and its
implementation in C for constructing the bases of finitely presented Lie (super)algebras
and their commutator tables.

Introduction

ciative combinatorial algebra.
Some examples of finitely presented algebras:

1.
2.

Any finite-dimensional algebra.

Kac and Kac-Moody (super)algebras with their generalization known as Borcherds

algebras [3].

Lie (super)algebras of the string theories: Virasoro, Neveu-Schwarz and Ramond

algebras.
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4. Any simple finite-dimensional Lie algebra can be generated by two elements with
the number and structure of relations independent on the rank of the algebra. This
allows one to define such objects as Lie algebras of matrices of a complex size sl(\),
o(A) and sp(A), where A might be any complex number or even oo [4]. In a similar
way, one can define some Lie superalgebras of supermatrices of a complex size [5].

Below we describe briefly an algorithm and its C' implementation for determining the
explicit structure of an finitely presented Lie (super)algebra from defining relations, i.e.,
for constructing its basis and commutator table. In fact, our algorithm produces the
Grobner basis [1] for noncommutative and nonassociative cases. The algorithm and its
actual implementation are illustrated by a rather simple example arising in mathematical
physics.

2 Algorithm and Its Implementation

Input: The set of generators X = {x1,x9,...} with prescribed Zy parities d; = 0,1 and
positive integer weights w; (= 1 by default); set of scalar parameters P = {p1,p2,...}
if they present in the relations; set of defining relations R = {ri,r2,...}, where r;
are Lie polynomials with coefficients from the commutative ring Z[p1, pa2, . . .].

Output: The reduced set of relations (Grobner basis) R = {7,7,...}; the list of basis
elements £ = {e1, ea,...}; the commutator table [e;, ;] = cfjek, where cfj are the
structure constants; the table of expressions containing p; and considered as nonzeros
during computation. Particular values of p; may cause a branching of computation
and, possibly, of the resulting algebra structure; dimensions of homogeneous com-

ponents in the obtained Lie (super)algebra.

The algorithm includes the following principal steps:

1. Reduction of the initial set R to an equivalent canonical form R. InR=
{71,T9,...} all the relations and their algebraic consequences are mutually reduced,
i.e., all possible substitutions in 7; are done.

2. Construction of the Lie (super)algebra basis. Some basis elements are ob-
tained at Step 1 as Lie (sub)monomials of 7;, but in the infinite-dimensional case
the basis must be completed by the regular commutators of already existing basis
elements. The term regular means basis monomials of a free algebra, i.e., algebra
with the empty set R.

3. Construction of the commutator table. Here the commutators of the basis
elements obtained at Step 2 are computed by the direct commutating with the
further reduction of the resulting expression modulo the relations R.

Step 1 of the algorithm is ideologically similar to construction of Grobner bases for poly-
nomial ideals in a commutative algebra [6]. In our case, however, we deal with noncom-
mutative and, moreover, with nonassociative monomials. One can easily prove that for
constructing algebraic consequences it is sufficient to multiply relations not by arbitrary
Lie monomials but by generators only, and even by those of them which do not form
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a regular monomial with the leading monomial of the relation. These facts allow us to
increase the efficiency of the algorithm considerably.

All computations, starting with reading the input relations, are executed modulo Ja-
cobi identities and the relations have been treated. This allows us to minimize resimplifi-
cation of the calculated structures.

The algorithm has been implemented in the C language. The source code has the total
length about 7500 lines and contains about 140 C' functions realizing: top-level algorithms,
Lie (super)algebra operations, manipulation with scalar polynomials, multiprecision inte-
ger arithmetic, substitutions, list processing, input and output, etc.

3 Sample Session

The following session file is the result of applying the program to the relations obtained
in the investigation [7] of symmetries of N = 1 Manin-Radul [2] superization of the KdV
equation. The relations contain two even generators x; and xs and odd generator y. We
deform the original system by two parameters a and b to demonstrate the problem of
classification.

The program for construction of finitely presented Lie superalgebras
Hall numeration. Version of April 8, 1995
V. P. Gerdt and V. V. Kornyak

Enter name of existing or new input file -> skdvab.in
Input data:

Generators: x_2 -y x_1;

Parameters: a b;

Relations:

[[ly,x_11,x_1],x_1];

[y,x_21;

[y, [[ly,x_11,x_11,y1]1;

[y, [[y,x_11,[y,x_111]1 - a [[y,[ly,x_11,y1],x_1];

[x_1,x_2] - [[y,[Lly,[Ly,x_11,y11,y11,y]1;

[x_1,[[y,x_11,y]1]1 + [ly,x_11,[y,x_11]1 + [[ly,x_11,x_1]1,y];
[x_1,[ly,x_1],[y,x_1111 + b [x_1,[[[y,x_1],x_1]1,y1];
[x_1,[Lly,[[ly,x_11,y11,y1]1 - 3 [ly,x_11,y] - [[ly,[[y,x_11,y11,x_1]1,y1;

Right-normed output for Lie monomials? (y/n) -> n
Standard grading assumes unit weight for every generator.
Do you want to use a different grading? (y/n) -> n

Enter limiting number for relations -> 20

Initial relatioms:

1 [x,yl =0
2

@2 [x ,[x,[y,x111 =0
1 1 1

@3 [x,ly,ly,ly,x 1111 =0
1 1
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@) [ly,x 1,0y,[ly,x 111 =0
1 1

6) 2b-2) [ly,x1,[x ,ly,x 111 +b [x ,[Ix ,[y,[y,x 1111
1 1 1 1 1 1

®) [x ,Lly,ly,ly,[ly,x 11111 - 3 [y,[y,x 11 =0
1 1 1

@ ly,ly,ly,[ly,[y,[y,x 111111 + [x ,x 1 =0
1 2 1

Nonzero parametric coefficients:
1) a-2
(2 b-1

2
3 b +b -2

Reduced relations:

1) [x,yl =0
2

2 [x,x]1=0
2 1

3) I[ly,[y,x11 =0
1

4 x,kx,ly,x111 =0
1 1 1

B) [ly,x1,[x ,[y,x 111 =0
1 1 1

®) [[x ,ly,x11,[x ,[ly,x 111 =0
1 1 1 1

Basis elements:

(1) E =x
1 2
(2 0 =y
2
(3) E =x
3 1
4) E = [y,y]
4
) 0 = [y,x1

=0
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(6) 0 [z ,[y,x 1]

6 1 1

(7) E [ly,x 1,[0y,x 1]

7 1 1

Nonzero commutators of basis elements:

(1) [0,0]1=E
2 2 4
(2> B,E]l=0
2 3 5
3 [E,0]1=0
3 5 6
(4> [0,0]1=E
5 5 7
(6) [0,0]1=E
2 6 7

Dimensions of homogeneous components:

dim G =3
1

dim G =2
2

dim G =1
3

dim G =1
4

Time: 0.05 sec

Number of relatioms: 15 Relation space: 120 bytes
Number of ordinals: 40 Ordinal space: 480 bytes
Number of nodes: 50 Node space: 600 bytes

Total space: 1200 bytes

Here E; and O; are even and odd basis elements, respectively. In the case of an infinite-
dimensional algebra, the program prints out only those commutators which can be ex-
pressed in terms of the basis elements that have been computed.

In the above example, the chosen ordering among generators xo < y < x1 provides
the minimal number of reduced relations in the output. As well as for the commutative
Grobner bases method, the final structure of the reduced relations and even their number
essentially depend on the ordering chosen. It can be easily seen that for the generic
values of parameters a and b we have a seven-dimensional nilpotent Lie superalgebra. A
branching of the algebra structure is possible at the values of parameters a = 2, b = 1
and b = —2. The computations with these particular values show that the choice b = 1
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or b = —2 leads to the same algebra structure, whereas at a = 2 the algebra becomes
infinite-dimensional. In [7], this algebra at @ = 2 and b = 1 has been identified with the
product of some seven-dimensional nilpotent algebra and the positive subalgebra of the
twisted Kac-Moody superalgebra C'(?)(2).

4 Conclusion

We have tested the program on the standard relations [h;,h;] = 0, [e;, fj] = dijhy,
[hisej] = ajiej, [hi, f;] = —ajifj, for Chevalley generators e;, f;, h; with Serre relations
(ade;)=%ie; =0, (ad f;)' =% f; = 0 added to them for all simple Lie algebras of the rank
up to 10. Here a;; is the Cartan matrix, ¢,j = 1,...,rank. The most cumbersome compu-
tations among these algebras are related to the exceptional algebra Eg. Here the number
of initial relations is 290. The program generates a Grobner basis which contains 23074
relations involving Lie monomials up to 58 degree with Lie algebra basis elements going
up to 29 degree. The task requires 15 min 36 sec of computing time and 815516 bytes of
memory on an 25 MHz MS-DOS based AT /386 PC. One can see that the implementation
is rather efficient.

Unlike commutative algebra, where such an universal algorithmic tool for analysis of
polynomial ideals as the Grébner basis method has been developed,® its generalizations [1]
to noncommutative and, especially, to nonassociative algebras are still far from being of
practical interest. Moreover, because of very serious mathematical and algorithmic prob-
lems are still to be solved, there are only a few packages implementing the noncommutative
Grébner basis technique, and no one of them so far is able to deal with nonassociative
algebras. It justifies the practical use of other algorithmic methods. Among them there is
one based on the straightforward verification of Jacobi identities [8, 9].

Our approach reveals some common features with the involutive approach for com-
mutative algebra [10]. The latter can be considered as another algorithmic method to
Grobner basis construction, different from Buchberger’s algorithm [6]. By this reason, the
further analysis of our method could give a new insight to generalization of the Grébner
basis approach to Lie (super)algebras.
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