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Abstract

The Painlevé-test has been applied to checking the integrability of nonlinear PDEs,
since similarity solutions of many soliton equations satisfy the Painlevé equation. As
is well known, such similarity solutions can be obtained by the infinitesimal transfor-
mation, that is, the classical similarity analysis, and also the dimension of the PDEs
can be reduced.

In this paper, the KdV, the mKdV, and the nonlinear Schrödinger equations are
considered and are transformed into equations with loss and/or nonuniformity by
transformations constructed on a basis of the local similarity variables. The trans-
formations include the Bäcklund and the Galilei invariant ones. It should be noticed
that the approach is applicable to other PDEs and for nonlocal similarity variables.

1 Introduction

From a standpoint that similarity solutions [1–3] of nonlinear PDEs satisfy the Painlevé
equation [4, 5], the so-called Painlevé-test was proposed and has been applied to the
judgement of integrability. In the classical similarity analysis, especially the following two
points are characterized: If a differential equation is invariant under the transformations,
(i) its order can be reduced by one, and (ii) it is possible to find similarity solutions of
the equation. Tajiri and the author have shown that the KP equation and the cylindrical
KdV equation can be reduced to the Painlevé equation [7, 8]. Also, nonlinear PDEs
reduced to the Painlevé equation have been derived through similarity solutions [9]. As
an interesting example, the author has pointed out that the Harry-Dym equation can not
pass the Painlevé-test, but can be rewritten into the mKdV equation by the hodograph
transformation [10]. Recently, the symmetry analysis of Maxwell’s equations etc. has been
developed [11, 12].
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The aim of this paper is to construct the Bäcklund transformation (B tr.) and the
Galilei invariant transformation (GI tr.) on a basis of the local similarity variables of the
KdV, the mKdV, and the nonlinear Schrödinger (NLS) equations. First, it is shown that
the GI tr. of the KdV equation is derived and the equation can be transformed to the KdV
equation with loss and nonuniformity terms. For the NLS equation, the GI tr. and the B
tr. to the wave equation describing a linearly inhomogeneous plasma are constructed and
the equation for optical soliton communications with fiber loss [13]. Finally, as concluding
remarks, it is summarized that the proposed approach will be practical for finding the B
tr. and the GI tr. of nonlinear PDEs.

2 The Classical Similarity Method and Transformations

In this section, the classical similarity method and an approach to obtain the B tr. and
the GI tr. are briefly explained. As a general form, we consider

F (x, t, u, ux, ut, uxx, · · · · · ·) = 0, (1)

and the infinitesimals as

x∗ = x + εξ(x, t, u) + O(ε2),
t∗ = t + ετ(x, t, u) + O(ε2), (2)
u∗ = u + εη(x, t, u) + O(ε2),

Then, eq. (1) can be transformed to

F (x∗, t∗, u∗, u∗x∗ , u
∗
t∗ , u

∗
x∗x∗ , · · · · · ·) = 0. (3)

Under the invariant condition on the solution surface, we have

η(x, t, u) = ξ(x, t, u)
∂u

∂x
+ τ(x, t, u)

∂u

∂t
, (4)

and the solution satisfies the characteristic equation, that is,

dx

ξ(x, t, u)
=

dt

τ(x, t, u)
=

du

η(x, t, u)
. (5)

Eq. (5) gives

dx

dt
≡ f1(x, t, u), (6)

du

dt
≡ f2(x, t, u), (7)

and integrating eq. (6) yields

x = g1(t, u, C1) (8)

with an integration constant C1. From eq. (7), we find similarly, using a constant C2,

u = g2(x, t, C2). (9)
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Here, regarding C1 and C2 as an independent variable and the dependent one, respectively,
eqs. (8) and (9) can be rewritten in the form

C1 ≡ ζ = G1(x, t, u), (10)
C2 = C2(C1) ≡ f(ζ) = G2(x, t, u). (11)

Substituting them into eq. (1), we arrive at the ODE

K(ζ, f, f ′, f”, · · · · · ·) = 0. (12)

Moreover, from eqs. (10) and (11), if we formaly set

ζ ≡ X = G1(x, t, u), (13)
T ≡ T (t), (14)

f(ζ) ≡ U(X, T ) = G2(x, t, u),
u = G(x, t, U(X, T )), (15)

thus eq.(1) becomes

F̃ (X, T, U, UX , UT , UXX , · · · · · ·) = 0. (16)

Therefore, eqs. (13)–(15) are the B tr. between eqs. (1) and (16), and the case of eq.
(1)=eq. (16) corresponds to the GI tr.

3 Soliton Equations

As examples, we treat the KdV, the mKdV and the NLS equations.

3.1 The KdV equation

We start from the KdV equation

ut + uux +
1
2
uxxx = 0, (17)

and find the infinitesimals as

ξ = c1x + c2t + c3,

τ = 3c1t + c4, (18)
η = −2c1u + c2,

where c1, c2, c3 and c4 are arbitrary constants. So, the local similarity variables of the
general case are

ζ =
x− c2

2c1
t +

1
c1

(
c3 −

c2c4

2c1

)
(3c1t + c4)1/3

, (19)

u(x, t) =
c2

2c1
+

1
(3c1t + c4)2/3

f(ζ). (20)
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Next, according to eqs. (13)–(15), we set the following;

X =
lx + mt + n

(pt + q)1/3
,

T = g0(t), (21)

u = r +
1

(pt + q)2/3
U(X, T ),

where l,m, n, p, q and r are real constants, and g0(t) is a function of t to be determined
later. If we choose g0(t) = (1/p) ln |pt + q| and m = −lr, eq. (17) becomes the KdV
equation with loss and nonuniformity

UT − 2
3
pU − 1

3
pXUX + lUUX +

1
2
l3UXXX = 0. (22)

Also, supposing m = p = 0, l = q = 1, n = −r and g0(t) = t gives

X = x− rt,

T = t, (23)
u = r + U(X, T ),

UT + UUX +
1
2
UXXX = 0. (24)

Therefore, the transformation (23) is the GI tr.

3.2 The mKdV equation

Next, for the mKdV equation

ut + u2ux +
1
2
uxxx = 0, (25)

we get the local infinitesimals

ξ = c1x + c2,

τ = 3c1t + c3, (26)
η = −c1u,

and the similarity variables

ζ =
1

(3c1t + c3)1/3

(
x +

c2

c1

)
, (27)

u(x, t) =
1

(3c1t + c3)1/3
f(ζ). (28)

Then, by the transformation

X = lxt−1/3,

T = q ln |rt|, (29)
u = pt−1/3U(X, T ),
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we obtain

UT − 1
3q

(XU)X +
lp2

q
U2UX +

l3

2q
UXXX = 0, (30)

which has an N-soliton solution, and setting l = p = q = 1 for simplicity gives the GI tr.
as

X̃ = X + m exp
(
− 1

3
T

)
,

T̃ = T, (31)
U(X, T ) = Ũ(X̃, T̃ ).

3.3 The NLS equation

The NLS equation describing the pulse propagation in optical fiber is given by

iut + uxx + 2|u|2u = 0 (32)

and similarly the local infinitesimals are

ξ = c1x + 2c2t + c3,

τ = 2c1t + c4, (33)
η = {−c1 + i(c2x + c5)}u.

The variables can be classified into the following three cases.

(i) c1, c2 = 0, c3, c4, c5 6= 0: In this case, we have

ζ = c4x− c3t,

(34)

u = f(ζ) exp
{
i
(
c4x +

(c5

c4
− c3

)
t
)}

,

and by the B tr.

X = lx + mt,

T = t, (35)
u(x, t) = U(X, T ) exp{i(px + qt)},

eq.(32) becomes

i{UT + (2lp + m)UX} − (p2 + q)U + l2UXX + 2|U |2U = 0. (36)

Especially, choosing l = 1,m = −2p and q = −p2, we find eq. (36)=eq. (32) and the B
tr. (35).

(ii) c1 = 0, c2 ∼ c5 6= 0 : Similarly, we derive

X = x− 2αt2,

T = t, (37)

u(x, t) = U(X, T ) exp
{
i2α

(
xt− 4

3
αt2

)}
,
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and eq. (32) can be transformed to

iUT + UXX + 2|U |2U = 2αXU, (38)

which is an equation for the wave in a linearly inhomogeneous plasma with cubic nonlin-
earity.

(iii) c1 ∼ c5 6= 0 : Therefore, the general case gives

X =
x + m√
|nt + k|

− 2s

n

√
|nt + k|,

T =
1
n

ln |nt + k|, (39)

u =
1√

|nt + k|
U(X, T ) exp

{
i(r ln |nt + k|+ s(x + m)− 2s2

n
(nt + k) + s2t

}
,

and eq.(32) becomes

iUT + UXX + 2|U |2U = i
n

2
(XU)X + nrU. (40)

The first term of the r.h.s includes the fiber loss term i(n/2)U .

4 Concluding Remarks

We have shown that the B tr. and the GI tr. can be constructed by the classical similarity
analysis for soliton equations. In the sense that the KdV, the mKdV, and the NLS equa-
tions treated here are integrable, the resultant equations with loss and/or nonuniformity,
which are physically interesting, are integrable, too. In particular, eq. (40) will be related
to the soliton propagation in optical fiber with loss. Finally, it should be emphasized that
this approach can be applied to other PDEs and the case of nonlocal similarity variables.
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