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Regular Partially Invariant Submodels

of Gas Dynamics Equations

L.V.OVSYANNIKOV and A.P.CHUPAKHIN

Hydrodynamics Institute, Novosibirsk, Russia

The Program SUBMODELS [1] is aimed to exhaust all possibilities derived from the symmetry
of differential equations for construction of submodels (i.e., systems of equations of the reduced
dimension) which describe classes of exact solutions for initial equations. In the frame of this
Program, our paper communicates the description of all (up to similarity) regular submodels for
the system of Gas Dynamics with the general state equation. Submodels are classified by their
types (σ, δ), where σ is a rank and δ is a defect. Regularity of a submodel means that invariant
independent variables are functions of initial independent variables only. The classification tables,
comments to them, and some characteristic examples are presented.

1 General points

The system E of differential equations with n independent variables x = (x1, ..., xn)
and m unknown functions u = (u1, ..., um) is considered. Let E admit a local Lie
group H of transformations of the space Rn+m(x, u) and let H have the universal
invariant I = (I1, ..., I`).

Definition 1. The system of equations E | M obtained by the reducing E on the
invariant manifold M of the group H is called H–submodel of the type (σ, δ) if M
has the dimension n + δ in Rn+m(x, u) and the dimension σ in the space of invariants
R`(I) thereby σ ≥ 0 and 0 ≤ δ < m. Solutions for the system E | M are called
partially invariant solutions of rank σ and defect δ, or H(σ, δ)–solutions for short.

If such M exists, then components of I may be selected so that with decompositions
u = (u′, u′′), I = (I ′, I ′′), where u′ = (u1, ..., um−δ), I ′ = (I1, ..., Im−δ) the relations hold
(g.r. means ”general rank”)

∂I ′′/∂u′ = 0, g.r. ‖∂I ′/∂u′‖ = m− δ, g.r. ‖∂I ′′/∂(x, u′′)‖ = σ, (1.1)

σ = `−m + δ. (1.2)

Then if we put
v = I ′(x, u), y = I ′′(x, u′′), (1.3)
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the equations of M may be written in the form

M : v = V (y). (1.4)

The equalities (1.3), (1.4) give the representation of H(σ, δ)–solutions via invariants
of the group H. The H(σ, δ)–submodel equations are obtained by substitution of this
representation in the equations of E. As a result, the system E is divided into two
subsystems: invariant subsystem E/H for unknown functions V (y) and some additional,
in common case overdetermined subsystem Π for ”superfluous” functions u′′(x). If Π
is noncompatible then the set of H(σ, δ)–solutions is empty. Therefore, the problem of
finding H(σ, δ)–solutions in the first turn is persisted in the investigation of compatibility
of equations Π (leading Π into involution).
Definition 2. The number

µ = g.r. ‖∂I ′′/∂u′′‖

is called the measure of nonregularity for H(σ, δ)–submodel. For, µ = 0 the H(σ, δ)–
submodel is called regular, otherwise (if µ > 0) nonregular.

The significant differencies between regular and nonregular submodels are described
in [2]. Particularly for regular solutions, invariant independent variables y (1.3) in the
subsystem E/H depend on initial independent variables only that makes the leading
subsystem Π into involution essentially easier.

In applications, it is used not the group H itself but its Lie algebra of operators with
the basis

Xα = ξi
α(x, u)∂xi + ηk

α(x, u)∂uk (α = 1, ..., r). (1.5)

Then the number ` is defined by the general rank of the matrix, whose elements are
coordinates of the operators (1.5)

r∗ = g.r. ‖ξi
α(x, u), ηk

α(x, u)‖,

namely, ` = n + m− r∗. The substitution into (1.2) gives

σ = δ + n− r∗, (1.6)

that determines the rank σ via the given defect δ.
It is known [3] that possible values of the defect δ satisfy inequalities

max{r∗ − n, 0} ≤ δ ≤ min{r∗ − 1,m− 1}. (1.7)

It follows from inequalities (1.7) and formula (1.6) that the number of different types (σ, δ)
is equal to nm.
Definition 3. H(σ, 0)–solutions are called invariant H–solutions of the rank σ (always
σ < n).

For invariant H–solutions, it will be y = I ′′(x) in (1.3), i.e., all invariant H–solutions
are regular ones. Here, the submodel E |M consists of the invariant subsystem E/H
only, the subsystem Π is empty and there is no problem of leading into involution.

Being defect δ > 0 the process of leading the subsystem Π into involution may
be branched and give different classes of H(σ, δ)–solutions. Some of these classes may
occur to be H1(σ1, δ1)–solutions for a subgroup H1 ⊂ H. It is known [3] that thereby
σ1 ≥ σ, δ1 ≤ δ always.
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Generally speaking, it is easier to find and research solutions with a lower rank and
fixed defect or lower defect and fixed rank. Therefore, the following notion is useful.
Definition 4. Let some class of H(σ, δ)–solutions be the class of H1(σ1, δ1)–solutions
too with a subgroup H1 ⊂ H so that

σ1 = σ, δ1 < δ. (1.8)

In this case, it is said that reduction of the H(σ, δ)–solutions to less defect for this class
takes place. Vice versa, let some class of H(σ, δ)–solutions be the class of H2(σ2, δ2)–
solutions too with an overgroup H2 ⊃ H so that

σ2 < σ, δ2 = δ. (1.9)

Then it is said that inverse reduction of the H(σ, δ)–solutions to less rank takes place.
There are many examples of reduction of solutions to invariant ones (δ = 0). The

theorems of reduction giving sufficient conditions on the basis of structural properties of
the subsystem Π are contained in [3].

2 Gas Dynamics equations

The system E is considered on the 9–dimensional base space R9(t, ~x, ~u, ρ, S) with
independent variables t (time), ~x = (x, y, z) (Descartes coordinates in R3) and unknown
functions ~u = (u, v, w) (velocity), ρ (density), S (entropy)

ρD~u +∇p = 0, Dρ + ρdiv~u = 0, DS = 0, p = F (ρ, S). (2.1)

Here D = ∂t + ~u · ∇, ∇ = (∂x, ∂y, ∂z). Pressure p is defined by the state equation (last
ones in (2.1)), where F (ρ, S) is the known smooth function which satisfies inequalities
Fρ = c2 > 0 (c is the speed of sound) and FS > 0.

It is known that system (2.1) admits the 11–parameters local Lie group G11 of
transformations of the space R9. The algebra Lie L11 of this group has the following
basis of operators:

X1 = ∂x, X2 = ∂y, X3 = ∂z,

X4 = t∂x + ∂u, X5 = t∂y + ∂v, X6 = t∂z + ∂w

X7 = y∂z − z∂y + v∂w − w∂v,

X8 = z∂x − x∂z + w∂u − u∂w,

X9 = x∂y − y∂x + u∂v − v∂u,

X10 = ∂t, X11 = t∂t + x∂x + y∂y + z∂z.

(2.2)

The normalized optimal system of subalgebras ΘL11 is presented in [1]. It consists of
220 representatives being a potential source of H(σ, δ)–submodels.

These representatives are denoted by symbols Lr,i, where r is the dimension of the
subalgebra and i is the number of subalgebras of given dimension according to table
ΘL11.
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3 Types of submodels

For system (2.1), we have n = 4 and m = 5. So there are possible 20 types of H(σ, δ)–
submodels for (2.1) a priori. These types are defined by relations (1.6) and (1.7). The
result is presented in Table 1. It contains initial information about the number of different
submodels of each type. These submodels are defined not only by their types, but depend
on a concrete representation of the algebra Lie L11 by operators (2.2) in the space R9.
For example, by virtue (2.2), quantities ρ, S, and p are invariants for each subgroup of
G11.

TABLE 1.

σ δ ` N Nreg Comments
3 0 8 13 (1) 13 (1) invariant
2 0 26 (2) 26 (2) invariant7
3 1 26 (2) 1 (2)
1 0 38 (3) 38 (3) invariant
2 1 6 51 (3) 12 (3)
3 2 47 (3) —

0 0 5 (4) 5 (4) invariant
isobaric

1 1 46 (4) + 1 (5) 29 (4)5
2 2 47 (4) + 1 (5) 1 (4)
3 3 47 (4) + 2 (5) —

0 1 22 (5) + 2 (6) 22 (5) partial
isobaric

1 2 35 (5) + 13 (6) 9 (5) + 1 (6)4
2 3 35 (5) + 8 (6) —
3 4 35 (5) + 8 (6) —

0 2 13 (6) + 10 (7) 13 (6) + 10 (7) partial
isobaric

1 3 3 1 (6) + 8 (7) 1 (7) barochronic
2 4 1 (6) + 5 (7) —
0 3 1 (≥ 7) 1 (≥ 7) isobaric2
1 4 1 (7) — isentropic

and barotropic
0 4 1 — — no

The types of submodels (σ, δ) are shown in the first and the second columns of the Table
1. The possible dimensions of the space of invariants ` are presented in the third one.
Information about the number of subalgebras N from the optimal system generating
different submodels is in the fourth column. Here, the number N is presented as the sum
N1(r1) + N2(r2), where rk is the dimension of a subalgebra and Nk(rk) is the number
of rk -dimensional subalgebras. The number of subalgebras Nreg generating different
regular submodels (in the same designations) is in the fifth column. The sign – means
the absence of the subalgebra of this type. The sixth column contains comments about
concrete classes of solutions.
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Some classes of motions are emphasized among the gas motions described by system
(2.1). The list of special submodels is presented below for convenience of future references.

Type (1,4). Isentropic motions, S = const. System (2.1) is reduced to the following:

ρD~u + F ′(ρ)∇ρ = 0, Dρ + ρdiv~u = 0, p = F (ρ) (3.1)

with the given function F (ρ).
Type (1,4). Barotropic motions, p = P (ρ). These motions may be isentropic when

P (ρ) = F (ρ), otherwise S is not constant. In the last case, system (2.1) is reduced to

D~u +∇e = 0, div~u = 0, De = 0, (3.2)

where e = e(ρ) is entalpy. The pressure p as a function of ρ is defined by the formula
p =

∫
ρe(ρ)dρ.

Type (1,3). Barochronic motions, p = p(t), ρ = ρ(t). These motions are isentropic.
System (2.1) has the form:

D~u = 0, div~u = −ρ′/ρ, p(t) = F (ρ(t)) (3.3)

with the given function F (ρ).
Type (0,3). Isobaric motions, p = const. System (2.1) is reduced to

D~u = 0, div~u = 0, Dρ = 0, F (ρ, S) = const (3.4)

with the given function F (ρ, S) which defines the dependence ρ(S).
Systems of equations (3.2), (3.3), (3.4) are overdetermined. It is the known expression

for a general solution containing arbitrary functions for system (3.4). System (3.3) has
been lead into involution, but its general solutions is not constructed now. The problem
of leading into involution the system (3.2) is unsolved too.

Quantities ρ, S are invariants of every subalgebra of ΘL11. This fact influences the
structure of submodels. In particular, there are no submodels of the type (0,4). Really,
rank σ = 0 means that ρ = const and S = const, defect δ = 4 means that there are 4
superfluous functions, but only three functions u, v, w remain unknown here. The same
fact shows that all submodels of type (0, δ) describe isobaric motions. All the solutions
of the type (0, 0) (constant solution among them) are contained in the class of solutions
of type the (1,0) generated by the subalgebra L3,33 with the basis X2, X3, X10. These
solutions have the folloving general form:

u = 0, v = v(x), w = w(x), ρ = ρ(x), p = const.

All invariant submodels (type (σ, 0)) were described separatly and are not presented
in this work (type (3,0) has been published in [1]). So here the following possible regular
submodels are presented only, i.e., unique ones of types (3,1), (2,2) and sets of submodels of
types (2,1), (1,1), and (1,2). One submodel of type (1,2) is marked. It arises in researching
some other submodels and by this reason may by called canonical one.
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4 Canonical submodel of the type (1,2)

It describes a two–dimensional version of barochronic motions and is generated by any-
one of subalgebras L5,17, L5,37, L6,800 . All these subalgebras have identical invariants
t, u, ρ, S and superfluous functions v, w. The representation of a solution is

(u, ρ, S) | t ; (v, w) | (t, x, y, z).

It follows from (3.3) that u′(t) = 0, i.e., u = const. By means of Galilei translation,
u can be reduced to zero: u = 0. Then equations (3.3) come to

vt + vvy + wvz = 0, wt + vwy + wwz = 0, (4.1)

vy + wz = 2h, (4.2)

with an unknown function h = h(t). Then the density ρ = ρ(t) is defined from the
equation ρ′ = −2hρ.

Compatibility conditions for system (4.1), (4.2) are

vywz − vzwy = k, (4.3)

k = h′ + 2h2, k′ + 2hk = 0. (4.4)

Under these conditions, system (4.1) – (4.4) is in involution. This system is integrable
and its solution contains arbitrary functions. It is linearized by change of variables

z = Z(t, y, v), w = W (t, y, v) (4.5)

and is reduced to the following

Wv = Zy + 2hZv, Wy = −kZv; (4.6)

Wt + vWy = 0, Zt + vZy = W. (4.7)

The subsystem (4.6) is integrated as a system of equations with constant coefficients.
The form of solutions depends on the discriminant d = h2 − k sign. System (4.6) has
a hyperbolic type for d > 0, elliptic type for d < 0 and parabolic one when d = 0.
Functions h(t) and k(t) are determined easy as the solutions of ordinary differential
equations (4.4). They are rational functions of t. The subsystem (4.7) is reduced to
ordinary differential equations too. Finally the solution is defined in implicit form from
relations (4.5) with the known functions Z and W .

5 Regular submodel of the type (3,1)

It this generated by the subalgebra L2,26 with the basis X1, X4. Invariants are
t, y, z, v, w, ρ, S and a superfluous function is u. The representation of a solu-
tion is:

u = u(t, x, y, z); (v, w, ρ, S) | (t, y, z).
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Here, system (2.1) takes the form

D′u + uux = 0, ρD′v + py = 0, ρD′w + pz = 0,

D′ρ + ρ(ux + vy + wz) = 0, D′S = 0, p = F (ρ, S),
(5.1)

with D′ = ∂x + v∂y + w∂z.
In order to lead system (5.1) into involution, it is sufficient to note that by virtue of the

fourth equation in (5.1), ux is the function of t, y, z only. Therefore, this superfluous
function can be presented in the following form:

u = (x + X)/h (5.2)

with functions X = X(t, y, z), h = h(t, y, z). With representation (5.2), system (5.1) is
transformed to

ρD′v + py = 0, ρD′w + pz = 0, D′ρ + ρ(vy + wz) = −ρ/h,

D′S = 0, D′X = 0, D′h = 1.
(5.3)

System (5.3) is in involution. It may be treated as a submodel of two–dimensional gas
motions with the mass source (right side in the third equation) depending on the solution.

The submodel of two–dimensional gas motions without source can be derived from (5.5)
by introducing modified density and pressure ρ∗ = hρ, p∗ = hp. Then a new ”equation of
state” will depend on h, namely, p∗ = hF (ρ∗/h, S).

6 Regular submodel of the type (2,2)

This submodel is generated by the subalgebras L4,47 and L5,14. They have identical
invariants t, x, u, ρ, S and superfluous functions are v, w. Representation of the
solution is

(u, ρ, S) | (t, x) ; (v, w) | (t, x, y, z).

System (2.1) after introducing auxiliary invariant function h = h(t, x) is divided into
an invariant subsystem

ρ(ut + uux) + px = 0, ρt + uρx + ρux + 2ρh = 0,

St + uSx = 0, p = F (ρ, S)
(6.1)

and overdetermined subsystem for superfluous functions v, w:

vt + uvx + vvy + wvz = 0, wt + uwx + vwy + wwz = 0,

vy + wz = 2h.
(6.2)

Compatibility conditions are

vywz − vzwy = k(t, x),

ht + uhx + 2h2 = k, kt + ukx + 2hk = 0.
(6.3)
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Systems (6.1)–(6.3) are in involution. Subsystem (6.2), (6.3) is similar to the canonical
system (4.1)–(4.4) and exactly coincides with it after introducing a Lagrange coordinate
ξ = ξ(t, x) as the solution of the equation ξt + uξx = 0 and changing variables (t, x) →
(t, ξ). Hence, subsystem (6.2), (6.3) is integrable. The remaining subsystem (6.1) describes
one–dimensional gas motions with the mass source 2ρh.

The function ξ(t, x) can be chosen in such a manner that following relations hold

ρ = kξx, ρu = −kξt. (6.4)

They integrate the second equation of (6.1). Here S = S(ξ), so one quazilinear second–
order equation with known coefficients can be derived for the function ξ(t, x) (similar to
the case for one–dimensional gas motion).

7 Regular submodels of type the (2,1)

There are 12 subalgebras from the optimal system ΘL11 generating these submodels
accordingly to the Table 1. All these subalgebras L3,i are three–dimensional. We have
the detailed description of these submodels. Here we present a brief one in Table 2.

TABLE 2.

Invariants
i Basis L3,i S. f. Char.independent unknown class
6 1, 4, α7 + 11 R/t, θ − α ln t V, W u χs

8 7, 8, 9 t, r U, H ω χe

11 1, 4, 7 t, R V, W u χe

13 2, 3, 7 t, x u, q ϕ χe

1500 3 + 5, 2 – 6, 7 t, x u, V ∗ θ∗ χe

17 1, 4, 7 + 10 R, θ − t V, W u χs

23 1, 4, α6 + 11 y/t, z/t− α ln t v, w − z/t u χs

2700 3, 6, 4 + 10 x− 1
2 t2, y u− t, v w χs

29 1, 4, 10 y, z v, w u χs

38000
1 3, 1 + 5, 6 t, x− y/t u, v − y/t w χe

38000
2 3, 5, 2 + 6 t, x u, w + tv − y v χe

46 1, 2, 4 t, z v, w u χe

The numbers i of generating subalgebras L3,i are shown in the first column of Table 2.
The basic operators of a subalgebra are presented in the second column. Here the symbolic
notation is used: instead of operator Xk, its number k is shown only; the symbol α7+ 11,
where α is an arbitrary real number, replaces operator αX7 + X11 and so on. Bases of
invariants of subalgebras L3,i are indicated in the third and fourth columns. The following
standart designations are used: r =

√
x2 + y2 + z2, R =

√
y2 + z2, θ = arctan(z/y), V =

v cos θ + w sin θ, W = −v sin θ + +w cos θ, q =
√

v2 + w2, ϕ = arctan(w/v). Individual
designations are used for i = 8, where U and H are radial and tangent (to spheres
r = const) components of velocity vector ~u, respectively, while ω is the angle between
projections of ~u onto sphere and meridian. For i = 1500, quantities V ∗ and θ∗ are
introduced
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v =
ty + z

t2 + 1
+ V ∗ cos θ∗, w =

tz − y

t2 + 1
+ V ∗ sin θ∗.

In addition, for all listed submodels, the quantities ρ and S are invariant. They are
omitted in this table for short. The superfluous functions (S.f.) are presented in the
fifth column. The last column shows additional qualitative peculiarity of submodels, their
characteristic class χe or χs. Submodels of the class χe consist of hyperbolic–
type equations similar to ones for one–dimensional unsteady motions. Submodels of the
class χs consist of mixed elliptic – hyperbolic–type equations similar to ones for two–
dimensional steady flows.

The existence of corresponding partially invariant solutions is established for all sub-
models from Table 2. A submodel for i = 8 has been considered in the work [5]. A
submodel for i = 1500 is reduced to an invariant solution. All other submodels from
Table 2 are nonreducible.

8 Regular submodels of the type (1,2)

All these submodels with one exception are generated by five–dimensional subalgebras
L5,i. The submodel appropriate to the subalgebra L6,10 with the basis X1, X2, X3, X7,
X8, X9 is exclusive. It has invariants t, |~u|, ρ, S and superfluous functions v, w. This
submodel describes special barochronic motions having a constant |~u|:

u2 + v2 + w2 = a2 (a = const) (8.1)

The existence of these solutions has been established but the problem of finding a general
solution for corresponding overdeterminate system (3.3) with additional relation (8.1) is
open.

TABLE 3.

Invariants Doubles
i Basis L5,i S.f.independent unknown r = 5 r = 6
7 1, 5, 6, α4+7, u−αϕ−R/t q, ϕβ4+11 −β ln t

10 2, 3, 5, 6, x/t− u− x/t v, w 26 60
β4+7+α11 −(β/α) ln t

13 2, 3, 5, 6, t u− x/t v, w 35 15β4 + 7
15 1, 2, 3, 4, 7 t q u, ϕ

16 1, 4, 3 + 5, t V ∗ u, θ∗2− 6, 7
17 2, 3, 5, 6, t u v, w 37 800

1 + 7
18 2, 3, 5, 6, x− 1

2 t2 u− t v, w 31 1200
β4+7+β10

19 2, 3, 5, 6, x u v,w 33 137 + 10
36 2, 3, 4, 5, t w−tu−x u, v1 + 6
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TABLE 4.

Invariants
i Basis L4,i S.f.independent unknown
1 7, 8, 9, 11 r/t U,H ω

4 1, 4, 10, 7 + α11 Re−αθ q, ϕ− θ u

50 5, 6, 7, β4 + 11 x/t− β ln t u− x/t, q∗ ϕ∗

6 1, 4, 7, 11 R/t q, ϕ− θ u

70 2, 3, 7, β4 + 11 x/t− β ln t u− x/t, q ϕ

90 1, 5, 6, β4 + 7 t u− βϕ∗, q∗ ϕ∗

100 2, 3, 4, 7 t u− x/t, q ϕ

12 1, 2, 3, β4 + 7 t u− βϕ, q ϕ

13 7, 8, 9, 10 r U,H ω

14 2, 3, 7, 10 x u, q ϕ

160 2, 3, 7, 4 + 10 x− 1
2 t2 u− t, q ϕ

17 4, 5, 6, 7 t u− x/t, q∗ ϕ∗

18 4, 5, 6, 1 + 7 t u + (ϕ∗ − x)/t, q∗ ϕ∗

19 4, 3 + 5, 2− 6, α1 + 7 t u + (αθ∗ − x)/t, V ∗ θ∗

20 1, 3 + 5, 2− 6, α4 + 7 t u− αθ∗, V ∗ θ∗

21 2, 3, 4, 1 + 7 t u + (ϕ− x)/t, q ϕ

23 1, 4, 10, 11 z/y v, w u

29 1, 4, 6, α5 + 11 y/t− α ln t v − y/t, w − z/t u

300 2, 3, 6, β4 + σ5 + 11 x/t− β ln t u− x/t, v − σ ln t w

350 2, 3, 5, 4 + β6 + 10 x− 1
2 t2 u− t, w − βt v

360 2, 3, 5, 6 + 10 x u, w − t v

38 2, 3, 5, 10 x u, w v

41 1, σ2 + τ3 + 4, t j1, j2 u
α3 + 5, β2 + 6

42 1, 4, 3 + 5, 2 - 6 t V ∗, θ∗ u

43 1, 4, 5, 6 t v − y/t, w − z/t u

44 2, α1 + 3, 1 + 5, 6 t u, v − αtw − x + αz w

46 2, α1 + 3, 5, 6 t u, w + (x− αz)/αt v

48 1, 2, 3 + 5, 6 t u, v + tw − z w

50 1, 2, 3, 4 t v, w u

The full list of generating subalgebras L5,i is presented in Table 3 similar to Table 2.
The important effect of doubling takes place here: two (or more) nonsimilar subalgebras
generate the identical submodels because they have identical universal invariants. This
is a consequence of the special representation of the Lie algebra L11 by operators (2.2).
Effect of doubling is taken into account in Table 3. All the numbers i of doubling L5,i

and L6,i subalgebras are shown in the last two additional columns of Table 3.
The submodel for i = 17 is a canonical one (see n0 4). Submodels for i = 10, 13, 18, 19

contain subsystems similar to the canonical.
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9 Regular submodels of the type (1,1)

All 29 submodels of this type are generated by four–dimensional subalgebras L4,i. Their
brief description is presented in Table 4, which is built on the same principles and with
the same designations like Tables 2, 3. Additional invariants q∗, ϕ∗, j1, j2 occuring here
are defined by the following relations

v = y/t + q∗ cos ϕ∗, w = z/t + q∗ sin ϕ∗;

j1 = (t2 − αβ)v + (σt− βτ)u− ty + βz,

j2 = (t2 − αβ)w + (τt− ασ)u− αy + tz.

Corresponding H(1, 1)–solutions exist for all submodels from Table 4. Submodels with t
as the independent variable describe the special barochronic gas motions.

10 Concluding remarks

A complete list of all 100 regular partially invariant solutions of Gas Dynamics equations
(2.1) with the general state equation p = F (ρ, S) is the result of the given investigation.
This list may be wider for special state equations according to classification of ”big” models
of Gas Dynamics [1].

There are many enough nonregular submodels for system (2.1) too. They will be
subjects for a future investigation. As a rule, these submodels exist for the special state
equations only. The existence problem is not trivial in these cases. It is connected with
a problem of leading overdeterminate systems into involution. In [6, 7], this problem is
discussed among others for partially invariant submodels of the types (2,2) and (3,3) which
are generated by the subalgebra L4,40 with the basis X1, X2, X3, X10.

This work was financially supported by the Russian Fund of Fundamental Researches,
pr. No. 93–013–17326.
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