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1 Introduction

The classical Lie method for finding of exact solutions is based on the defining equations.
By now there is a large body of papers on symmetry properties and group invariant
solutions. An extensive bibliography can be found in Ovsiannikov [1], Ibragimov [2],
Olver [3].

The key idea of the method of differential constraints was proposed by Yanenko in [6].
The general formulation of the method of differential constraints requires that the original
system of partial differential equations

F 1 = 0, ..., Fm = 0 (1.1)

be enlarged by appending additional differential equations (diffential constraints or DC)

h1 = 0, ..., hp = 0, (1.2)

such that the overdetermining system (1.1), (1.2) satisfies some conditions of compatibility.
Applications of this method to gas dynamics can be found in Yanenko, Sidorov, Shapeev
[7].

Meleshko [8], Olver and Rosenau [5], Olver [9], Kaptsov [10], Levi and Winternitz [11]
show that many reduction methods such as partial invariance, separation of variables,
the Clarkson–Kruskal direct method, etc., can be included into the method of differential
constraints.

In practice, methods based on the Riquier–Ritt theory of overdetermined systems
of partial differential equations may be difficult. To simplify a search for DC, it was
proposed in [12] to use B–determining equations. The B–determining equations are slightly
more general than the classical defining equations. It is easy to introduce more general
determining equations. Briefly speaking, the general determining equations for finding DC
(1.2) of the system (1.1) are given by

Li(h1, ..., hp) = 0, i = 1, ..., q (1.3)

where Li are nonlinear operators and (1.3) must be satisfied for every smooth solution of
(1.1).
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For example, it is easy to check that the intermediate integrals

I1 = uy − ϕ(ux),

I2 = u− xux − yuy + ϕ(ux),

for the Monge–Ampere equation

u2
xy − uxxuyy = 0,

satisfy the determining equations

uxyDx(Ii)− uxxDy(Ii) = 0,

where Dx, Dy are total derivatives.
In this paper we introduce new algebraic structures and special classes of determining

equations. We apply the determining equations to find DC of the first order to the Prandtl
equation and the Zabolotskaya–Khokhlov one. In Section 3, we propose the determining
equations for higher order DC and consider an evolution equation of the third order.

2 General Notions and Some Examples

Before considering particular differential equations, it is useful to introduce some notations
and prove auxiliary statements. Let A be the algebra of smooth functions depending on
commutative variables xi, uα, where 1 ≤ i ≤ n, 1 ≤ k ≤ m, α = (α1, ..., αn) is a
multi–index, and αj ≥ 0.

The total derivatives D1, ..., Dn act on xi, u
k
α

Di(xi) = 1, Di(xj) = 0, i 6= j,

Di(uk
α1,...,αn

) = uk
α1,αi+1,...αn

.

The action of Di can be extended on A (see Olver [3]). The partial derivative of f ∈ A
with respect to uk

α is denoted by fuk
α

Consider the space Am and introduce the Lie bracket for any F,G ∈ Am

[F,G] =
∑

1 ≤ i ≤ m
|α| ≥ 0

Fui
α
Dα(Gi)−Gui

α
Dα(F i), (2.1)

where F i and Gi are components of F and G, Dα = Dα1
1 ...Dαn

n .
Given a system of partial differential equations

F 1 = 0, ..., Fm = 0, (2.2)

F i ∈ A,

a ∞ – prolongation of the system consists of equations

Dα(F i) = 0, i = 1, ...,m, |α| ≥ 0. (2.3)
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We will say that a equation f = 0 belongs to differential consequences of (2.2) and
write f ∈ [F ] if every smooth solution of (2.2) satisfies to f = 0.

It follows from the definition that if f ∈ [F ], then Di(f), fg ∈ [F ], for every g ∈ A.
A system of partial differention equations

f1 = 0, ..., fN = 0, fi ∈ A (2.4)

is called solvable if this system has at least one smooth solution.
From the above definitions, we have the following assertions.

Proposition 1. If the system (2.4) is solvable, then the system

g1 = 0, ..., gM = 0,

gi ∈ [f ]

is also solvable.

Corollary. If the system
f1 = 0, f2 = 0

is solvable, then the system

f1 + gDi(f2) = 0, f2 = 0, g ∈ A

is solvable too.
This corollary allows us to construct new differential equations with fixed DC f2 = 0.

Some examples can be found in Fokas, Liu [13].

Proposition 2. Suppose the system (1.1) with DC (1.2) be solvable. Then this system
is compatible with DC

α1h1 + ...+ αphp = 0, αi ∈ R.

Lemma 1. Assume that (2.2) be a system for a single unknown function u. Then any
function u which satisfies this system must also satisfy all of the equations

[F i, F j ] = 0 i, j = 1, ..., k.

Proof. According to definition, every term of the Lie brackets belongs to [F ]. It is obvious
that the proof follows from Proposition 1.

Given system (1.1), we can define symmetries of (1.1) as follows:

Sym = {h : h ∈ Am, [F, h] ⊂ [F ]}.

Equating to zero h ∈ Sym, we get DC.
It should be noted that the condition [F, h] ⊂ [F ] is equivalent to the classical defining

equations ∑
1 ≤ i ≤ m
|α| ≥ 0

Dα(hi)Fui
α
|[F ] = 0
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To generalize the previous construction, we introduce the set

BI = {h : h ∈ Am, [F, h] +B0h+
n∑

i=1

BiDih ⊂ [F ]},

where Bj is an m ×m matrix. Elements of Bj are functions of xi, u
k(1 ≤ i ≤ n, 1 ≤

k ≤ m).

Example 1. Consider the Prandtl equation

ψyyy = ψty + ψyψxy − ψxψyy,

which arises in the theory of viscous fluid. For convenience, we rewrite the above equation
in the following way:

uxxx = utx + uxuxy − uyuxx. (2.5)

In this case, the condition

[F, h] +B0h+
n∑

i=1

BiDih ⊂ [F ] (2.6)

implies the equation

D3
xh−DtDxh+ uyD

2
xh+ uxxDyh− uxDxDyh− uxyDxh+

+b0h+ b1Dxh+ b2Dyh+ b3Dth = 0, (2.7)

where h, b0, b1, b2, b3 are functions to be determined. The BI – determining equation (2.7)
must be satisfied for every smooth solution of (2.5). Suppose the functions bi depend
on t, x, y and u; the function h depends on t, x, y, u, ut, ux, and uy. The problem is to
find solutions h and corresponding functions b0, b1, b2, b3. The method for finding solutions
is very similar to the standard procedure applied in the group analysis of differential
equations [1], [3] and omitted here for the sake of brevity.

The Lie algebra of infinitesimal symmetries of the Prandtl equations was found by
Pukhnachov [12]. Moreover, the function

h1 = ux + kx+ r(t, y) (2.8)

is a solution of (2.7). Here r is an arbitrary smooth function. The corresponding b0, b1, b2,
and b3 are of the form

b0 = 0, b1 = −ry, b2 = b3 = 0.

Another solution of (2.7) is

h2 = vux + uy + uvx + w,

where the functions v(t, y) and w(t, x, y) must satisfy the following equations

vwx + wy − vt = 0, −wwxx − wtx + wxxx + w2
x = 0.
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The corresponding functions bi are

b0 = −wxx, b1 = wx, b2 = 0, b3 = 0.

If we set h1 = 0, then we have the equation

ux + kx+ r(t, y) = 0.

Solving the last equation, we find

u = −kx2/2− rx+ q, (2.9)

where q depends on t, y. Substitution of (2.9) into (2.5) yields

−rt + rry + kqy = 0.

If the function r is given, then we may find q by integrating the previous equation.

Example 2.2. The Zabolotskaya–Khokhlov equation (ZKE).
Consider the stationary, two–dimensional ZKE

uxxx + uuxx + u2
x + uyy = 0. (2.10)

From condition (2.6), we obtain the equation

D3
xh+ uD2

xh+ uxxh+ 2uxDxh+D2
yh+ b0h+ b1Dxh+ b2Dyh = 0, (2.11)

where b0, b1, and b2 are functions of x, y, u. This equation must be satisfied whenever u
satisfies (2.10).

Assume h to depend on x, y, u, ux, uy. One can show by a straightforward analysis
that h is of the form

h = a1ux + a2uy + a3, (2.12)

where a1, a2 only depend on x, y and a3 depends on x, y, u.
The classical and nonclassical symmetry groups of ZKE were found by Clarkson and

Hood [14].
It is possible to check that in addition to the classical symmetries, there exist three

solutions of (2.11)

h1 = xux + (y + c0)uy + u+
x2

(y + c0)2
, (2.13)

h2 = −(c1y + c0)ux + uy + 2c1(c1y + c0), (2.14)
h3 = ux + 2xv + w, (2.15)

where c0, c1 ∈ R and w, v must satisfy ordinary differential equations

w′′ = 6w2,

v′′ = 6wv.
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The corresponding functions b0, b1, b2 for (2.13), (2.14), (2.15) are

b0 = −2/(y + c0)2, b1 = −x/(y + c0)2, b2 = 1/(y + c0), (2.16)

b0 = 0, b1 = 2c1, b2 = 0, (2.17)

b0 = −4v, b1 = −2xv − w, b2 = 0. (2.18)

Using the direct method, Clarkson and Hood [14] found the following nonclassical sym-
metries

h4 = ux − 2u/x, h5 = ux − 2u/x+ 6/x2,

besides the classical symmetries and (2.13)-(2.15). The functions h4 and h5 do not satisfy
equation (2.11) if b0, b1, b2 only depend on x, y, u. But h4 and h5 are solutions of (2.11)
for some b0, b1 and b2 depending on x, y, u and ux.

3 Higher–Order Differential Constraints

The examples of DC considered so far in this paper have all been differential constraints
of the first order. To find DC, we used the conditions (2.6). On the other hand, it can be
shown [12] that system formed by an equation

ut = F (t, x, u, u1, u2) (3.1)

and a higher order DC

h = un + g(t, x, u, u1, ..., un−1) = 0, (3.2)

where n ≥ 5 and ui = ∂iu
∂xi

, is compatible if and only if h satisfies the determining equation

Dth = Fu2D
2
xh+ [Fu1 + nDxFu2 ]Dh+

[Fu + nDxFu1 +
n(n− 1)

2
D2

xFu2 + Fu2hhun−1un−1 − hun−1DxFu2 − 2Fu2Dxhun−1 ]h,

for every smooth solution of (3.1).
Using the method described in [12], it is possible to obtain determining equations which

correspond to higher order DC and partial differential equations more general than (3.1).
It is clear that these determining equations may differ from ones corresponding to the first
order DC and are more complicated. To simplify these equations, we will reject nonlinear
terms with respect to h. That is why for finding higher order differential constraints (3.2)
of evolution equations

ut = F (t, x, u, u1, ..., up),

we can propose the following determining equations

Dth =
p∑

r=0

r∑
k=0

Cr−k
n Dr−k

x (Fup−k
)Dp−r

x (h), (3.3)

where n ≥ k,Ck
n = n!

k!(n−k)! .
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Example. Consider the equation

ut = u3 + F (u, u1, u2). (3.4)

If n = 3, then equation (3.3) is

Dth = D3
xh+ Fu2D

2
xh+ (Fu1 + 3DxFu2)Dxh+

(3.5)

h(Fu + 3DxFu1 + 3D2Fu2).

We will seek solutions of the form

h = u3 + f(u, u1),

where f is a function to be determined. It is easy to see that the left and right sides of
(3.5) are polynomials in u4 and u3.

Equating coefficients of like powers (of u4 and u3) yields four equations

Fu2u2 = Fu1u2 = 0, fu1u1 = fuu1 = 0.

It follows that
F = αu2 + µ, f = cu1 + s, (3.6)

where c ∈ R, α and s may only depend on u, µ may depend on u and u1. Substituting
into (3.5) and equating the coefficient of u3

2 , we have

αu1u1u1 = 0

Hence
α = η2u2

1 + η1u1 + η0,

where η2, η1 and η0 are functions of u. The coefficients of u2
2u1, u

2
2, u2u

3
1,

u2u1, u2, and u3
1 show that

4η2
u + αuu = 0, η1

u = 0,

9η2
uu + αuuu = 0, s(3η2 + 2α) = 0,

(3.7)

−2η2c+ η0
uu − 2αuc− suu = 0,

−6η2c+ η0
uuu − 3αuuc− suuu = 0.

Assume that s = 0. Further analysis of the remaining terms in (3.5) proves that

F = (−2b1u2 + a1u+ a0)u2 + (b1u+ b0)u2
1 + ku1 − b1cu

3 + c(a1 + b0)u2 + c1u+ c0,

in which ai, bi and ci are arbitrary constants.
Since h takes the form

h = u3 + cu1,
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it follows that the corresponding DC is

u3 + cu1 = 0. (3.8)

From (3.7) we have

u = α(t) sin
√
cx+ β(t) cos

√
ct+ γ(t) (3.9)

for c > 0;

u = α(t) exp(
√
−cx) + β(t) exp(

√
−ct) + γ(t) (3.10)
for c < 0;

u = α(t)x2 + β(t)x+ γ(t) (3.11)
for c = 0.

Using the representation (3.9)-(3.11), it is easy to derive corresponding reduced equations
for the functions α, β and γ.

For example, the reduced system

αt = α(c1 + 1− 3γ),

βt = β(c1 − 1− 3γ),

γt = 4αβ + c1γ − 2γ2,

is obtained from the equation

ut = u3 + uu2 + u2
1 − 2u2 + c1u.

If s 6= 0 for the system (3.7), then it can be shown that

F = (k1u+ k0)u2 −
2
3
k1u

2
1 + n1u1 + n2(k1u+ k0)−4/3 + n3,

h = u3 + n2(k1u+ k0)−1/3 + n3,

where k1, k0, n1, n2, n3 are arbitrary constants.
To generalize the above construction, we introduce, for any F,G ∈ Am, the following

bracket
{F,G} =

∑
α,β,j

cβα,j(D
β(F j)Dα−β(G

uj
α
)−Dβ(Gj)Dα−β(F

uj
α
)) (3.12)

where cβα,j ∈ R, the sum runs over all n–multi–indices |α| ≥ |β|, and 1 ≤ j ≤ m. It is
evident that the Lie bracket is a special case of (3.12).

Given system (1.1) then by Bg we denote the set

{h : h ∈ Am, {F, h} ⊂ [F ]}.

Every element h ∈ Bg generates DC
h = 0. (3.13)

But there is no guarantee in general that the corresponding system (1.1), (3.13) will be
consistent. However, as noted above, there exist conditions which guarantee compatibility
of (1.1), (3.13) (see [10],[12]).



DETERMINING EQUATIONS AND DIFFERENTIAL EQUATIONS 291

References

[1] Ovsiannikov L.V., Group Analysis of Differential Equations, Academic Press, New York, 1982.

[2] Ibragimov N.H., Transformation Groups Applied to Mathematical Physics, Reidel, Boston, 1985.

[3] Olver P.J., Applications of Lie Groups to Differential Equations. Springer-Verlag, New York, 1986.

[4] Bluman G.W. and Cole J.D., The general similarity solution of the heat equation, J. Math., 1969,
V.18, 1025–1042.

[5] Olver P.J. and Rosenau P., Group-invariant solutions of differential equations, SIAM J. Appl. Math.,
1987, V.47, 263–278 (in Russian).

[6] Yanenko N.N., Theory of consistency and methods of integrating systems of nonlinear partial differ-
ential equations, in Proceedings of the Fourth All–Union Mathematical Congress, Leningrad, 1964,
247–259. (in Russian).

[7] Sidorov A.F., Shapeev V.P., and Yanenko N.N., Method of Differential Constraints and its Applica-
tions to Gas Dynamics, Nauka, Novosibirsk, 1984. (In Russian).

[8] Meleshko S.V., Differential constraints and one–parameter Lie–Bäcklund groups,Sov. Math. Dokl.,
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