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Abstract
We apply the similarity method based on a Lie group to a nonlinear model of the heat
equation and find its Lie algebra.The optimal system of the model is contructed from
the Lie algebra. New classes of similarity solutions are obtained.

Introduction

The paper consists of two sections. In the first section we use the Lie similarity method
to find similarity solutions of the inhomogeneous nonlinear diffusion equation in the form

f(x)
∂u(x, t)

∂t
=

∂

∂x

(
g(x)unuq

x

)
, (1)

when f(x) = xp, g(x) = xm, and p, m and q are arbitrary constants. Eq.(1) is of consider-
able interest both in physics and mathematics as well as its special cases have been used
to successfuly model physical situations. For example, the case p = m = 0, n = −1/2 and
q = 1 arises in models of plasma diffusion [9] and the thermal expulsion of liquid helium
[5,10]. The homogeneous form of Eq.(1) has been used by [6] to discuss the spread of
lava from volcanic eruptions, the case p = m = 0, q = n = 1 arises in the other physical
phenomena besides heat or chemical diffusion, for example, in the isothermal percolation
of a perfect gas through a microporous medium [10].

The reduction of the case q = 1, p = m = 0 and n = −1/2,−1,−3/2 is discussed in
[4] and for q = 1, p, m and n are arbitrary, is discussed in [8]. When f = const, g = 1
and n, q are arbitrary, the transient temperature distribution is determined without the
thermal relaxation effect [7].

In the second section we use the method of group–invariant solution [3–11] to determine
new classes of similarity reduction of the case f = a2 = const, g = 1 and n, q are arbitrary,
in addition to the previously known ones [7].

Section 1

When f = xp and g = xm, then Eq.(1) becomes

xp ∂u

∂t
=

∂

∂x

(
xmunuq

x

)
. (2)

Classical similarity [2,3] determines transformations which leave the differential equation
invariant. In the infinitesimal representation, the corresponding generator of the transfo-
mation is written as
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v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
, (3)

where ξ, τ and η are unknown functions of x, t and u. The condition of invariance of Eq.(2)
is

Pr(2)v(4)

∣∣∣∣∣∣∣ = 0
4 = 0

, (4)

where

4 = mxm−1unuq
x + nxmun−1uq−1

x + qxmunuq−1
x uxx − xput, (5)

and

Pr(2)v = v + ηx ∂

∂ux
+ ηt ∂

∂ut
+ ηxx ∂

∂uxx
(6)

is the second prolongation of the vector field v and ηx, ηt, ηxx are expressed in terms
of ξ, τ, η and their derivatives. From Eq.(4) by equating the coefficients of the various

monomials of u and inserting uxx =
xp−m

qunuq−1
x

ut −
m

qx
ux −

n

qu
u2

x, we get the following set

of determining equations

ξ = ξ(x), τ = τ(t), η = η(u),

mξ −mxξx + qx2ξxx = 0,

nη − nuηu − qu2ηuu = 0,

(m− p)
x ξ + n

uη + τ ′ − (q + 1)ξx + (q − 1)ηu = 0.

(7)

Solving Eq.(7), we get

ξ(x) =
[
2c2 + c1(1− n− q)

]
x/r, τ(t) = 2c2t + c3, η(u) = −c1u (8)

where c1, c2, c3 are arbitrary constants and r = p −m + q + 1. Then we have the three
symmetry vector fields, namely

v1 =
∂

∂t
,

v2 =
1− n− q

r
x

∂

∂x
− u

∂

∂u
, (9)

v3 = 2t
∂

∂t
+

2
r
x

∂

∂x
.

These fields form a Lie algebra. We find [v1, v3] = 2v1 and all other commutations vanish.
By using the adjoint algebra [2], we can find four different kinds of solutions corresponding
to the basic fields of an optimal system given by v2, v3, v1 + v2 and v2 + v3. Also we can
obtain further solutions of Eq.(2) through the characteristic equation

dx

ξ
=

dt

τ
=

du

η
. (10)
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Group invariant solutions of Eq.(2)

(a) For the vector field v2.
The general reduction of this subgroup can be obtained by the similarity representation

s = t, u = x−r/(1−n−q)F (s). (11)

From Eq.(11) and Eq.(2), we get

F ′ =

[
rq+1 + rq(1 + p)(n + q − 1)

(n + q − 1)(q+1)

]
F (n+q). (12)

Direct integration gives

F =

[
c− rq+1 + rq(1 + p)(n + q − 1)

(n + q − 1)(q+1)
s

]1/(1−n−q)

, (13)

where c is arbitrary constant, (1 − n − q) 6= 0 and r = p −m + q + 1. Then the solution
of Eq.(2) is

u(x, t) = x−r/(1−n−q)

[
c− rq+1 + rq(1 + p)(n + q − 1)

(n + q − 1)(q+1)
t

]1/(1−n−q)

. (14)

(b) For the linear combination v1 + kv2, k is constant.
The finite transformation for this combination can be written as

s = x exp
(
−(1− n− q)t

r

)
, u = exp(−kt)F (s). (15)

Then Eq.(2) becomes

−ksp
(

F − n + q − 1
r

sF ′
)

=
d

ds

(
smFn(F ′)q) , (16)

if we put (n + q − 1) = −r/(1 + p), then Eq.(16) becomes

− k

(1 + p)
d

ds

(
s(1+p)F

)
=

d

ds

(
smFn(F ′)q) . (17)

Integrating Eq.(17) once, we get

F (n+q−1)/q = (−k)1/q
(

1
1 + p

)1/q (n + q − 1
r

)
sr/q + c, (18)

where c is the constant of integration, q 6= 0, r 6= 0 and p 6= −1.

(c) For the linear combination v3 + kv2, k is constant.
The similarity representation is given by

s = xt−1/2M , u = t−k/2F (s), (19)

where M = r/[2 + k(1− q − n)]. Then Eq.(2) becomes

−sp
(

k

2
F +

s

2M
F ′
)

=
d

ds

(
smFn(F ′)q) . (20)
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For k =
p + 1
M

Eq.(20) becomes

− 1
2M

d

ds

(
sp+1F

)
=

d

ds

(
smFn(F ′)q) . (21)

Integrating Eq.(21), we obtain

− 1
2M

sp+1F = smFn(F ′)q + c, (22)

where c is the constant of integration. For c = 0, integrating Eq.(22) gives

F (n+q−1)/q = c1 +
(n + q − 1)

r

(
− 1

2M

)1/q

sr/q, r 6= 0, (23)

F (n+q−1)/q = c1 +
(n + q − 1)

q

(
− 1

2M

)1/q

ln s, r = 0, (24)

where c1 is the constant of integration and q 6= 0. For c 6= 0 consider the case g = 2,
m = 1, n = 0 and p = −1. Then Eq.(22) becomes s(F ′)2 = −F + c, where c is a constant,
and this equation has the solution F = −s + c, i.e., u = −xt−1 + c. which is a solution of
Eq.(2), when q = 2,m = 1, n = 0 and p = −1.

(d) For the vector field v3.
The similarity variable s and the similarity solution are

s = xr/t, u = F (s). (25)

From Eq.(25) and Eq.(2), we get

r(q+1)sq d

ds

(
Fn(F ′)q)+ rq(qr − q −m)sq−1Fn(F ′)q + sF ′ = 0. (26)

Consider the case q = m = 2, n = −2 and p is arbitrary. Then Eq.(26) becomes

F ′′ =
1
F

(F ′)2 − 1
s
F ′ +

a

s
F 2, (27)

where a = − 1
2r3

. Eq.(27) is equivalent to a special case of one of the Painlevé equati-

ons [1].

Section 2

When f = a2 = const and g = 1, then Eq.(1) becomes

a2ut =
∂

∂x
(unuq

x) . (28)

This equation was discussed in [7] and one similarity solution was obtained for it, but in
this section we shall find new classes of similarity solutions for Eq.(28). By using Eq.(4),
in this case we have

4 = qunuq−1
x uxx + nun−1uq+1

x − a2ut. (29)
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This will lead to a system of determining equations involving x, t, u and the derivatives of
u with respect to x and t as well as ξ, τ, η and their derivatives with respect to x, t, u. The
solution of these determining equations is Eq.(8) itself at p = m = 0, i.e.,

ξ(x) =
[
2c2 + c1(1− n− q)

]
x/(q + 1),

τ(t) = 2c2t + c3, η(u) = −c1u.
(30)

The vector field (3) is spanned by the three vector fields

v1 =
∂

∂t
,

v2 =
1− q − n

q + 1
x

∂

∂x
− u

∂

∂u
, (31)

v3 = 2t
∂

∂t
+

2
q + 1

x
∂

∂x
.

These vector fields satisfy the commutator table and by using the adjoint algebra [2],
we find four different kinds of solutions corresponding to the basic fields of an optimal
system given by v2, v3, v1 + v2, v2 + v3. Further solutions can be obtained by using the

characteristic equation
dx

ξ
=

dt

τ
=

du

η
and the solution which was obtained in [7] can be

find by setting c1 = α = const, c2 = 1/2, c3 = 0 and p = m = 0 in the characteristic
equation.

Group of similarity solutions of Eq.(28)

(a) For the vector field v2.
The similarity variable s and the similarity solution are

s = t, u = x−(q+1)/((1−n−q)F (s). (32)

From Eq.(32) and Eq.(28), we get

F ′ =
1
a2

[
(q + 1)(q+1) + (q + 1)q(n + q − 1)

(n + q − 1)(q+1)

]
Fn+q. (33)

After integration and by using Eq.(32), we get

u = x−h/(1−n−q)

[
c− 1

a2

(
hh + hq(n + q − 1)

(n + q − 1)h

)
t

]1/(1−n−q)

(34)

which is a solution of Eq.(28), where h = q + 1 and c is the constant of integration and
n + q 6= 1.

(b) For the linear combination v1 + kv2, k is a constant.
The corresponding new similarity representation is given by

s = x exp
(

k(n + q − 1)t
q + 1

)
,
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u = exp(−kt)F (s). (35)

Then from Eq.(35) and Eq.(28), we get

−a2k

(
F − n + q − 1

q + 1
sF ′

)
=

d

ds

(
Fn(F ′)q) . (36)

If we put n = −2q, then Eq.(36) becomes

−a2k
d

ds
(sF ) =

d

ds

(
F−2q(F ′)q

)
. (37)

Integrating Eq.(37), we get

F−(q+1)/q = ba2/qs(q+1)/q + C, (38)

where b = −(−k)1/q and C is the constant of integration.

(c) For the linear combination v3 + kv2, k is a constant.
The similarity representation is

s = xt−1/2M , u = t−k/2F (s), (39)

where M = (1 + q)/[2 + k(1− q − n)]. Then Eq.(28) becomes

−a2
(

k

2
F +

s

2M
F ′
)

=
d

ds

(
Fn(F ′)q) . (40)

If we put k =
1
M

, after integration we get

− a2

2M
sF = Fn(F ′)q + C. (41)

Let C = 0, then the solution of Eq.(41) is

F (n+q−1) = c1 +
(n + q − 1)

(q + 1)

(
−a2

2

)1/q

M−1/qs(q+1)/q, (42)

where c1 is a constant and q 6= 0,−1. For q = −1 then we have

F (2−n) = c2 −
2M

a2
(2− n) ln s, (43)

where c− 2 is a constant.

(d) For the vector field v3.
The similarity variable s and the similarity solution are

s =
xq+1

t
, u = F (s), (44)

then Eq.(28) becomes

rrsq d

ds

(
Fn(F ′)q)+ r(r−1)q2sq−1Fn(F ′)q + a2sF ′ = 0, (45)

where r = q + 1. Eq.(45) can be written in the form

F ′′ +
n(F ′)2

qF
+

q

rs
F ′ +

a2

qrr
s1−qF−n(F ′)(2−q) = 0. (46)

Consider the case q = 2, then Eq.(46) becomes a special case of one of the Painlevé
equations [1].
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