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1 Conditional symmetry

We investigate conditional symmetry in three directions. The first direction is a research
of the Q-conditional symmetry. The second direction is studying conditional symmetry
when an algebra of invariance is known and an additional condition is unknown. The
third direction is the investigation of the conditional symmetry in the case where a known
additional condition differs from Qu = 0.

We describe these directions by example of the nonlinear heat equation

u0 + ~∇
(
f(u)~∇u

)
= h(u).

For convenience, we consider the equivalent equation

H(u)u0 +4u = F (u), (1)

where u = u(x), x = (x0, ~x) ∈ R1+n, u0 = ∂u
∂x0

.

Theorem 1. When n = 1, the equation (1) is Q-conditional invariant with respect to an
operator

Q = A (x, u) ∂0 + B (x, u) ∂1 + C (x, u) ∂u, (2)

if the functions A,B, C are solutions of the following system of differential equations.

Case 1.

A = 1, Buu = 0, Cuu = 2 (B1u + HBBu) ,

3BuF = 2 (C1u + HBuC)−
(
HB0 + B11 + 2HBB1 + ḢBC

)
,

CḞ − (Cu − 2B1) F = HC0 + C11 + 2HCB1 + ḢC2;
(3)

Case 2.

A = 0, B = 1,

CḞ −
(
Cu + Ḣ

H C
)

F = HC0 + C11 + 2CC1u + C2
1u − C Ḣ

H (CCu + C1) .
(4)

We failed to find the general solution of the system (3), (4). But even with the help
of a particular solution of these systems, we can find a whole variety of operators which
cannot be found by the Lie method. Some of these operators are given below.
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I. At F (u) = 0, H(u) = 1
u , the equation

u0 + uu11 = 0 (5)

is known as the Heisenberg ferromagnetic equation. The following operators were obtained
for this equation

Q1 = x0∂1 + x1∂4,
Q2 = x1∂0 + ∂1,

Q3 =
√

x0∂1 +
√

2u∂u,
Q4 = ∂1 + lnu∂4,
Q5 = x1

2∂0 + 2x1u∂1 + 2u2∂u,
Q6 =

√
2x0∂1 + L(u)∂4,

where L(u) is a solution of the equation uL′′ + L′ = L−1.

II. For the equation(
3λ1 +

λ2

u

)
u0 + u11 =

(
2λ1 +

λ2

u

)
P3(u), (6)

where P3(u) = λ0 + λ1u + λ2u
2 + λ3u

3, λµ − const, µ = 0, 4, we obtain the operator

Q = ∂0 + u∂1 + P3(u)∂u. (7)

Operators of the Q-conditional symmetry can be used to construct and to reduce
differential equations and to find their exact solutions. We describe its employment on
the example of equation (6); the ansatz for operator (7) has the form

x1 −
∫

udu

P3(u)
= ϕ(ω), ω = x0 −

∫
du

P3(u)
. (8)

This ansatz reduces equation (6) to the ordinary differential equation

ϕ̈ + P3 (ϕ̇) = 0. (9)

The general solution of equation (9) can be written in the parametrical form

ω = −
∫

dt

P3(t)
, ϕ = −

∫
tdt

P3(t)
.

Then 
x0 =

∫ du
P3(u) −

∫ dt
P3(t)

,

x1 =
∫ udu

P3(u) −
∫ tdt

P3(t)
.

(10)

We consider the second direction of the investigation of conditional symmetry on the
example of the equation

u0 + ~∇
(
f(u)~∇u

)
= 0. (11)

Theorem 2. Equation (11) is invariant with respect to the Galilean operators

Ga = x0∂a + M(u)xa∂u (12)
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with the additional conditions

u0 +
1

2M(u)

(
~∇u

)2
= 0, M(u) =

u

2f(u)
.

Note. According to the Lie method, the equation (11) is not Galilean-invariant with an
arbitrary function f(u) 6= const. This fact indicates nonuniversality of the Lie method.
Thus, the equation that describes heat processes must satisfy the Galilean principle of
relativity.

The example of the third direction of the investigation of conditional symmetry is the
following statement.

Theorem 3. The equation

u0 + ~∇
(
eu~∇u

)
+ λe−u = 0 (13)

with the additional condition

u0 +
n

2
eu

(
~∇u

)2
+

λ

2
e−u = 0 (14)

is invariant with respect to the conformal algebra AC(1, n) with the operators

∂0, ∂a, Jab = xa∂b − xb∂a, D = x0∂0 + xa∂a + ∂u, (15)

J0a = xa∂0 + nw∂a, K0 = 2λwD −
(
w2 − λ

n~x2 − e2n
)

∂0,

Ka = 2λ
nxaD −

(
w2 − λ

n~x2 − e2n
)

∂a,
(16)

where w = x0 + 1
λeu.

The additional condition (14) extends considerably the symmetry of equation (13),
since the Lie symmetry of this equation consists of operators (15). The invariance of
a parabolical equation with respect to the conformal algebra is unusual. This can be
accounted for the fact that equation (1) has a very wide set of solutions, and this set has
invariant subsets with respect to the Galilean and conformal algebras.

2 Nonlocal symmetry

It is well known (see, for example, [1]) that the equation

u0 = ∂1 (f(u)u1) (17)

reduces to the equation

Zt = ∂x [f∗(z)zx] , f∗(z) = z−2f
(
z−1

)
(18)

by the chain of the substitutions

1) x0 = x0, x1 = x1, u (x0, x1) = ∂v (x0, x1)
∂x1

,

2) x0 = t, x1 = w (t, x) , v (x0, x1) = x,

3) t = t, x = x,
∂w(t, x)

∂x = z(t, x).
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That is to say that these substitutions do not take out the equation from the class of
equation (17). We used this fact for finding nonlocal ansatzes which reduce equation (17)
to ordinary differential equations, and for constructing nonlocal formulae of generation
and superposition of the solutions of this equation at concrete f(n).

Theorem 4. If u(1) (x0, x1) is a solution of the equation

u0 = ∂1

(
u−2u1

)
, (19)

then a new solution u(2) (x0, x1) of equation (19) can be found by the formula

u(2) (x0, x1) =
u(1) (x0, τ)

ax1u(1) (x0, τ)− x1τ−1
, (20)

where a is an arbitrary numerical parameter which can be defined from the following system
τ0 = u(1)−2

(x0, τ) (x0, τ) τ1
−2τ11 + 2a,

τ1 =
[
ax1u

(1) (x0, τ) + x1τ
−1

]−1
.

(21)

The next example shows efficiency of formulae (20)–(21)

u(1) (x0, x1) = 1 −→ ln
x1u

(2) (x0, x1)
1− ax1u(2) (x0, x1)

+
ax1u

(2) (x0, x1)
1− ax1u(2) (x0, x1)

= a2x0 + lnx1.

Theorem 5. If u(1) (x0, x1) and u(2) (x0, x1) are solutions of equation (19), then the third
solution u(3) (x0, x1) can be find by the formula

1
u(3) (x0, x1)

=
1

u(1)
(
x0, τ (1)

) +
1

u(2)
(
x0, τ (2)

) , (22)

where τ (1), τ (2) are functional parameters which are defined by the conditions
τ (1) + τ (2) = x1,

u(1)
(
x0, τ

(1)
)

dτ (1) = u(2)
(
x0, τ

(2)
)

dτ (2),

τ
(k)
0 = τ

(k)
11

[
τ

(k)
1 u(k)

(
x0, τ

(k)
)]−2

, k = 1, 2.

(23)

After the substitutions 1)–3), the equation

u0 = ∂1

(
u−

2
3 u1

)
(24)

reduces to the equation

zt = ∂x

(
z−

4
3 zx

)
. (25)

Using the fact that equation (25) has a wider Lie symmetry than equation (24), we
can construct the nonlocal ansatz[

x1 + ϕ1(x0)
] [

ϕ̇2(x0)
] 3

4 =
∫ [

ϕ̇3(τ)
] 3

2 ϕ4(ω)dτ,

ω = ϕ2(x0) + ϕ3(τ), τ1 = u,
(26)
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which reduces equation (24) to the system
ϕ̇1 = 0, ϕ̈2 = λ2

(
ϕ̇2

)2
,

2(ϕ̇)3(ϕ′′′)3 − 3
(
ϕ̈3

)2 = 2λ1
(
ϕ̇3

)4
,(

ϕ4
)− 4

3 ϕ̈4 − 4
3

(
ϕ4

)− 7
3

(
ϕ̇4

)2 + 3λ1
(
ϕ4

)− 1
3 + 3

4λ2ϕ
4 − ϕ̇4 = 0,

(27)

where λi = const, i = 1, 3.

Theorem 6. Any two solutions u(1) (x0, x1) and u(2) (x0, x1) of the equation

u0 = ∂1

[
1
u

f (lnu) u1

]
, (28)

where f (α) is an arbitrary smooth even function, are connected by the formula

u(2) (x0, x1) =
1

u(1) (x0, τ)
, (29)

where the functional parameter τ is found from the conditions

τ0 =
τ11

τ1
f (ln τ1) , τ1 =

1
u(1) (x0, τ)

.
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