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Parasupersymmetries and Non-Lie Constants

of Motion for Two-Particle Equations

Violeta TRETYNYK

Institute of Mathematics of the National Ukrainian Academy of Sciences,
3 Tereshchenkivska Street, Kyv 4, Ukrana

Abstract

We search for hidden symmetries of two-particle equations with oscillator-equivalent
potential proposed by Moshinsky with collaborators. We proved that these equations
admit hidden symmetries and parasupersymmetries which enable easily to find the
Hamiltonian spectra using algebraic methods.

1 Lie Symmetries

Let us consider the two-particle equations of Moshinsky et al. [1–4] in c.m. frame

L1ψ =
{
(~α1 − ~α2)

(
p− i

ω

2
xβ1β2

)
+m(β1 + β2)− E′

}
ψ = 0, (1.1)

and [4]

L2ψ =
{
(~α1 − ~α2)

(
p− i

ω

2
xβ1β2γ51γ52

)
+m(β1 + β2)− E′

}
ψ = 0, (1.2)

where ~α1, β1, γ51 and ~α2, β2, γ52 are commuting sets of 16× 16 matrices for the first
and second particles, correspondingly.

Our interest in equations (1.1), (1.2) is connected with their parasupersymmetric na-
ture. Making the similarity transformation

ψ → ψ′ = β2ψ, Lν → L′
ν = β2Lνβ2, ν = 1, 2,

we reduce (1.1), (1.2) to the form

L′
1ψ

′ ≡
{
[β0, βa]

(
pa +

iωxaη

2

)
+ β0m− E

}
ψ′ = 0, (1.3)

L′
2ψ

′ ≡
{
[β0, βa]

(
pa −

iωxaξ

2

)
+ β0m− E

}
ψ′ = 0, (1.4)

where

η = 1− 2β2
0 , ξ = (1− 2β2

0)(1− 2β2
5), E =

1
2
E′,
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γ
(i)
0 = βi, γ

(i)
a = βiαai, γ

(i)
5 = γ5i, i = 1, 2,

βµ = 1
2(γ(1)

µ + γ
(2)
µ ), µ = 0, 1, 2, 3, 5.

(1.5)

The equations (1.3), (1.4) are more convenient for symmetry analysis than (1.1), (1.2).
Indeed, the matrices βµ satisfy the Kemmer–Duffin–Petiau (KDP) algebra

βµβνβλ + βλβνβµ = gµνβλ + gνλβµ (1.6)

which enables to use the known results [5] connected with complete sets of irreducible
KDP matrices.

Using the classical Lie algorithm (see, e.g., references [6, 7]), it is possible to prove that
equations (1.3), (1.4) are invariant under a 6-parametrical Lie group, whose generators are

Ja = εabc(xbpc + iβbβc),

Q1 = (1 + γ(1)
µ γ(2)µ)(1 + 2γ(1)

µ γ(2)µ), (1.7)

Q2 = −(3 + 2γ(1)
µ γ(2)µ)γ(1)

µ γ(2)µ, Q3 = 1−Q1 −Q2,

where covariant summation is imposed over repeated indices µ = 0, 1, 2, 3.
The operators Ja are generators of the rotations group O(3). As to Q1, Q2 and Q3,

these symmetries exist due to the well-known fact that a 16×16-dimensional representation
of the KDP algebra is reducible and includes 10× 10, 5× 5 and 1× 1 (trivial) irreducible
representations. It means that the equation (1.3), (or (1.4)) can be reduced to three
noncoupled subsystems for ten-, five- and one-component functions.

Thus, denoting ψ = column(ψ(10), ψ(5), ψ(1)) where ψ(10), ψ(5), ψ(1) are ten-, five- and
one-component functions, we obtain from (1.3)

(H1 − E)ψ(10) ≡
{
[β(10)

0 , β(10)
a ]

(
pa +

iωxaη
(10)

2

)
+ β

(10)
0 m− E

}
ψ(10) = 0, (1.8)

(H0 − E)ψ(5) ≡
{
[β(5)

0 , β(5)
a ]

(
pa +

iωxaη
(5)

2

)
+ β

(5)
0 m− E

}
ψ(5) = 0, (1.9)

Eψ(1) = 0. (1.10)

As to ( 1.4), it reduces to the ten-component equation

(H1 − E)ψ(10) ≡
{
[β(10)

0 , β(10)
a ]

(
pa −

iωxaξ
(10)

2

)
+ β

(10)
0 m− E

}
ψ(10) = 0 (1.11)

and to equations (1.9), (1.10) for five- and one-component functions.
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2 Non-Lie Symmetries

Besides invariance with respect to the group O(3), equations (1.3), (1.4) are invariant
under a space-inversion transformation

ψ′(x) → ηψ′(−x),

where η is the matrix defined in (1.5). From this it follows that these equations admit a
non-Lie symmetry which we have called a Dirac-type constant of motion. Indeed, it is not
difficult to verify by direct calculation that the operator [8]

Q4 = η(2(S·J)2 − 2S·J− J2), (2.1)

where S = iβ×β,J is a vector, whose components Ja are defined in (1.7), commutes with
L′ of (1.3) and (1.4).

Using (1.6), we find the following cubic relation for H of (1.3)

H3 = H(Q5 +m2 − ω) + ωQ6, (2.2)

where

Q5 = p2 +
1
4
ω2x2 +

1
2
ωη, (2.3)

Q6 = m[β5, βa]La − iεabcβa[β5, βb]
(
pc +

i

2
ωxcη

)
, ~L = ~x× ~p. (2.4)

It is easy to show that Q5 commutes with L′
1 and so is a symmetry of (1.3). It follows

from (2.2) that Q6 commutes with H and so is one more symmetry of (1.3).
Repeating the above reasoning for equation (1.4), we recognize that in addition to

(2.1) there exists just one more symmetry

Q7 = p2 +
1
4
ω2x2 − 1

2
ωη̂, (2.5)

where

η̂ = 3− 2β2
0 − 4β2

5(1− β2
0). (2.6)

It is not difficult to verify that symmetries (2.1)–(2.5) commute with generators (1.7).
Thus in addition to Lie symmetries (1.7), equation (1.3) has three non-Lie constants

of motion (2.1), (2.3), (2.4), moreover, these operators form a basis of the 9-dimensional
Lie algebra satysfying the following relations

[Ja, Jb] = iεabcJc, [Qa, Jb] = [Qa, Qb] = 0, A,B = 1, 2, . . . 6. (2.7)

Lie and non-Lie symmetries of equation (1.4) are given in (1.7) and (2.1), (2.5); they
satisfy relations (2.7) with A,B = 1, 2, 3, 4, 7.
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3 Hidden Parasupersymmetries (PSS)

Let us investigate hidden symmetries of (1.3), (1.4) which appear to have structures typical
of parasupersymmetric quantum mechanics (PPSQM).

The Hamiltonian H of (1.3) can be expressed in the form

H = Q̂1 + β0m (3.1)

where Q̂1 is a parasupercharge

Q̂1 = [β0, βa]
(
pa +

iωxaη

2

)
.

Indeed, Q̂1 and Q̂2 = iηQ̂1 together with HPSS = Q5 + ω(1 − β2
5) (where Q5 is given in

(2.3)) satisfy relations

[HPSS , Q̂A] = 0, A,B,C = 1, 2,

[Q̂A, [Q̂B, Q̂C ]] = 4(δABQ̂C − δACQ̂B)HPSS ,

which characterize the algebra of PPSQM [10].
Equation (1.4) also possesses hidden parasupersymmetries. The corresponding Hamil-

tonian admits the representation (3.1), moreover, parasupercharges and parasuperHamil-
tonian have the form

Q̂1 = [β0, βa]
(
pa −

iωxaξ

2

)
, Q̂2 = i[β0, Q̂1], HPSS =

1
4
Q7,

where ξ and Q7 are given in (1.5) and (2.5).
We note that the Hamiltonian H of (1.4) also is a parasupercharge, inasmuch as

H3 = (Q7 +m2)H, [H,Q7 +m2] = 0, Hξ + ξH = 0. (3.2)

It follows from (3.2) that the operators

Q̂1 = H, Q̂2 = iξH, HPSS = Q7 +m2

satisfy the algebra of the Beckers–Debergh version of PPSQM [10].
We note that all the results of this section are valid for the reduced equations (1.8)–

(1.11), inasmuch as they are based on relations (1.6) satisfied by matrices βµ and β
(10)
µ ,

β
(5)
µ as well.

4 Hamiltonian Eigenvalues for Parastates

and Ortostates

In this section we use symmetries and hidden parasupersymmetries of (1.3), (1.4) to find
eigenvalues of the Hamiltonians by purely algebraic methods without solving correspon-
ding equations.

First, we consider the simplest nontrivial subsystem, i.e., (1.9). The equation (1.9)
describes spin zero [9] or parastates.
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To find possible eigenvalues of E, we use the fact that for 5×5 KDP matrices β(5)
5 ≡ 0,

and relation (2.2) reduces to the form

H3
0 = H0(Q5 +m2 − ω). (4.1)

Inasmuch as [H0, Q5] = 0, the relation (4.1) leads to the corresponding relation for eigen-
values E of H0 and q of Q5

E(E2 − q −m2 + ω) = 0.

In accodance with (2.3),

q = (2N + 3 + e)
ω

2
,

where N = 2n+ j, n = 0, 1, 2, ..., j = 0, 1, ..., N ; and e = ±1 are eigenvalues of η. Thus,

E = µ

√
(2N + 1 + e)

ω

2
+m2,

where µ = ±1, or

E = 0.

Inasmuch as the matrix η does not commute with H0 , the values of µ and e are not
independent. Using the Foldy–Woythoyzen transformation, it is possible to show that
eµ = −µ and so nonzero values of E are

E = ±
√
Nω +m2. (4.2)

Thus, we find algebraically the known eigenvalues [4] of E for parastates.
Consider the equation (1.8) describing spin-one states. To find eigenvalues of H1, we

use relation (2.2). After some algebraic transaformation we can obtain

H2
1 (H2

1 −Q5 −m2)(H2
1 −Q5 −m2 + ω) =

m2ω2

2
(J2 +Q4). (4.3)

Let us replace in (4.3) commuting operators H2
1 , Q5, J2 and Q4 by their eigenvalues E2,

(2N + 1 + e)ω/2, j(j + 1) and νj(j + 1), where j = 0, 1, 2, . . . , ν = ±1. As a result we
obtain

E2
(
E2 −m2 − (2N + 1 + e)

ω

2

)(
E2 −m2 − (2N + 3 + e)

ω

2

)
=

m2ω2

2
j(j + 1)(ν + 1). (4.4)

For ν = −1 we have three possibilities

E = 0, (4.5)

E = µ

√
m2 + (2N + 1 + e)

ω

2
, µ = ±1, (4.6)
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E = µ

√
m2 + (2N + 3 + e)

ω

2
. (4.7)

Like the case of parastates we conclude that values of µ and e are not independent. Using
non-relativistic approximation it is possible to show that in (4.6) µe = µ and in (4.7)
µe = −µ, and so nonzero energies are defined by the relation

E = ±
√
m2 + (N + 1)ω. (4.8)

For ν = 1 (4.4) reduces to the third-order algebraic equation for E2

E2(E2 −m2 − (N + 1)ω) (E2 −m2 − (N + 2)ω) = m2ω2j(j + 1). (4.9)

Formulae (4.2), (4.8), (4.9) are in good accordance with the results of Moshinsky et al.
[1–4]. Using hidden symmetries of (1.3), (1.4), we obtain these results in a straightforward
and easy way. The eigenvalues problem (1.4) also can be solved algebraically using (3.2).
Replacing in (3.2) operators H, Q7 by their eigenvalues E2 and q = (2N + 3 + −e)ω/2
(where e are eigenvalues of the matrix η̂ (2.6); moreover, eµ = −µ, where µ is the energy
sign), we come to the relations

E = 0 or E2 = m2 + (N + 2)ω.

This formula was already obtained [3] by solving equation (1.2) analytically.

I would like to thank Professor A.G. Nikitin for the proposing of the problem and
helpful discussions.
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