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The idea of introducing coordinate transformations to simplify the analytic expression
of a general problem is a powerful one. Symmetry and differential equations have been
close partners since the time of the founding masters, namely, Sophus Lie (1842–1899),
and his disciples. To this days, symmetry has continued to play a strong role. The ideas
of symmetry penetrated deep into various branches of science: mathematical physics,
mechanics and so on.

The role of symmetry in perturbation problems of nonlinear mechanics, which was
already used by many investigators since the 70-th (G. Hori, A. Camel, U. Kirchgraber),
has been developed considerably in recent time to gain further understanding and deve-
lopment such constructive and powerful methods as averaging and normal form methods.

Normalization techniques in the context with the averaging method was considered in
works by A.M. Molchanov [1], A.D. Brjuno [2], S.N. Chow, J. Mallet–Paret [3], Yu.A. Mit-
ropolsky, A.M. Samoilenko [4], J.A. Sanders, F. Verhulst [5].

An approach, where Lie series in parameter were used as transformation, was con-
sidered in works by G. Hori [6], [7], A. Kamel [8], U. Kirchgraber [10], U. Kirchgraber,
E. Stiefel [9], V.N. Bogaevsky, A.Ya. Povzner [11], V.F. Zhuravlev, D.N. Klimov [12].

Asymptotic methods of nonlinear mechanics developed by N.M. Krylov, N.N. Bo-
golyubov and Yu.A. Mitropolsky and known as the KBM method (see, for example, Bo-
golyubov N.N. and Mitropolsky Yu.A [18]) is a powerful tool for investigation of nonlinear
vibrations.

The present lecture deals with the development of new normalization procedures and
averaging algorithms in problems of nonlinear vibrations. Namely, the development of
asymptotic methods of perturbation theory is considered, making wide use of group theo-
retical techniques. Various assumptions about specific group properties are investigated,
and are shown to lead to modifications of existing methods, such as the Bogolyubov av-
eraging method and the Poincaré–Birkhoff normal form, as well as to formulation of new
ones. The development of normalization techniques on Lie groups is also treated.
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1 Mathematical Background

Below we are giving a short survey of two methods: Bogolyubov averaging method and
normal form method.

1.1. The standard system and Bogolyubov’s averaging. The new normaliza-
tion techniques was developed by Yu.A. Mitropolsky, A.K. Lopatin [13]–[15], A.K. Lopatin
[16],[17]. In their works, a new method was proposed for investigating systems of differ-
ential equations with small parameters. It was a further development of Bogolyubov’s
averaging method referred to by the authors as “the asymptotic decomposition method”.
The idea of a new approach originates from Bogolyubov’s averaging method (see [18])
but its realization is needed to use essentially new apparatus - the theory of continuous
transformation groups.

Let us explain the idea of the new approach. As is known, the starting point of
investigation by the averaging method is a system in the standard form

dx

dt
= εX(x, t, ε) , (1)

where x = col ‖ x1, . . . , xn ‖, X(x, t, ε) is an n-dimensional vector.
System (1), upon averaging

X0(ξ, ε) = lim
T→∞

1
T

T∫
0

X(ξ, t, ε)dt

and with a special change of variables, is reduced to the averaged system

dx̄

dt
= εX

(1)
0 (x̄) + ε2X

(2)
0 (x̄) + · · · , (2)

which does not explicitly contain the argument t. (To ensure the existence of the average,
we impose special conditions on the functions Xj(x, t, ε), j = 1, n. We omit the explicit
form of these conditions). Let us rewrite the initial system (1) in the equivalent form

dx

dt
= εX(x, y, ε),

dy

dt
= 1 (3)

and the averaged system (2) correspondingly in the form

dx̄

dt
= εX0(x̄),

dȳ

dt
= 1, (4)

where X0(x̄) = X
(1)
0 (x̄) + εX

(2)
0 (x̄) + · · ·. Integration of (4) is simpler than that of (3),

since the variables are separated: the system for slow variables x̄ does not contain a fast
variable ȳ and is integrated independently.

Everything stated above allows us to interpret the averaging method in the following
way: the averaging method transforms (3) with nonseparated variables into (4) with fast
and slow variables separated.

The described property of the separation of variables with the help of the averaging
method has group-theoretical characteristics: the averaging method transforms (3), which
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is not invariant with respect to the one-parameter transformation group generated by a
vector field

W =
∂

∂y
,

associated with the system of zero approximation (3), into the averaged system (4), which
is invariant with respect to the one-parameter transformation group generated by a vector
field

U =
∂

∂ȳ
,

associated with the system of zero approximation (4). This statement can be easily proved.

1.2. The normal form method. Consider a system of differential equations with
coefficients that are analytic in the neighborhood of zero

ẏ1 = a11y1 + · · ·+ a1nyn +
∑

f1
m1...mn

ym1
1 . . . ymn

n ,

· · · · · · · · · (5)

ẏn = an1y1 + · · ·+ annyn +
∑

fn
m1...mn

ym1
1 . . . ymn

n .

Nonlinear terms in the right-hand sides of system (5) are started with terms not lower
than the second order.

We consider the problem of finding an analytic change of variables

y = f(z), z = ‖z1, . . . , zn‖ , (6)

which turns a maximal number of coefficients at nonlinear terms into zero. The limiting
case is the linearization of system (5), i.e., transformation of it into

ż = Az, A = ‖aij‖ , i, j = 1, n (7)

under the action of the variable change (6). Since the procedure pointed out is ultimately
reduced to the solvability of linear nonhomogeneous algebraic equations, it turns out that
the reduction

(5)
y=f(z)−→ (7) (8)

is not always possible. In the general case, a system of nonlinear differential equations is
obtained

ż = Az + F (z).

This system is called a normal form.
We refer to the corresponding nonlinear term in the above equation as resonance. It

is clear that only resonance terms remain in the normal form. In particular, linearization
by (8) is possible only when there are no resonance terms (see, for example, [12]).

1.3. Generalization of Bogolyubov’s averaging method through the sym-
metry of the standard system. The asymptotic decomposition method is based
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on the group-theoretical interpretation of the averaging method. Consider the system of
ordinary differential equations

dx

dt
= ω(x) + εω̃(x), (9)

where

ω(x) = col ‖ω1(x), . . . , ωn(x)‖; ω̃(x) = col ‖ω̃1(x), . . . , ω̃n(x)‖.

The differential operator associated with the perturbed system (9) can be represented as

U0 = U + εŨ,

where

U = ω1
∂

∂x1
+ · · ·+ ωn

∂

∂xn
, Ũ = ω̃1

∂

∂x1
+ · · ·+ ω̃n

∂

∂xn
.

By using a certain change of variables in the form of a series in ε

x = ϕ(x̄, ε), (10)

system (9) is transformed into a new system

dx̄

dt
= ω(x̄) +

∞∑
ν=1

ενb(ν)(x̄), (11)

which is referred to as a centralized system. For this system, Ū0 = Ū + ε ˜̄U, where

Ū = ω1(x̄)
∂

∂x̄1
+ · · ·+ ωn(x̄)

∂

∂x̄n
,

˜̄U =
∞∑

ν=1

ενNν , Nν = b
(ν)
1 (x̄)

∂

∂x̄1
+ · · ·+ b(ν)

n (x̄)
∂

∂x̄n
. (12)

We impose a condition on the choice of transformations (10) saying that the centralized
system (11) should be invariant with respect to the one-parameter transformation group

x̄ = esŪ(x̄0)x̄0, (13)

where x̄0 is the vector of new variables. Therefore, after the change of variables (13),
system (11) turns into

dx̄0

dt
= ω(x̄0) +

∞∑
ν=1

ενb(ν)(x̄0),

which coincides with the original one up to the notations. This means that we have the
identities [Ū,Nν ] ≡ 0 for Ū,Nν , ν = 1, 2, . . . .

Presented below is some material which will be needed for understanding the structure
of the present lecture as a whole. The essential point in realizing the above-mentioned



SYMMETRY IN NONLINEAR MECHANICS 115

indicated scheme of the asymptotic decomposition algorithm is that transformations (10)
are chosen in the form of a series

x = eεSx̄, (14)

where

S = S1 + εS2 + · · · ,

Sj = γj1(x̄)
∂

∂x̄1
+ · · ·+ γjn(x̄)

∂

∂x̄n
.

Coefficients of Sj , γj1(x̄), . . . , γjn(x̄), are unknown functions. They should be determined
by the recurrent sequence of operator equations

[U,Sν ] = Fν . (15)

The operator Fν , ν = 1, 2, . . . is a known function of U and S1, . . . ,Sν−1, obtained on
previous steps.

In the case when S depends upon ε, Lie series (14) is called a Lie transformation.
Thus, the application of a Lie transformation as a change of variables enables us to use
the technique of continuous transformation groups.

From the theory of linear operators it is known that the solvability of the nonhomo-
geneous operator equation (15) depends on properties of solutions of the homogeneous
equation

[U,Sν ] = 0. (16)

Operator (12) Nν is a projection of the right-hand side of the equation onto the kernel
of operator (16), which is determined from the condition of solvability in the sense of the
nonhomogeneous equation

[U,Sν ] = Fν −Nν , ν = 1, 2, . . . . (17)

Depending on the way of solving Eqs. (15)−(17), various modifications of the algorithm
of the asymptotic decomposition one are obtained.

The asymptotic decomposition method, being applied to the same objects as the classi-
cal asymptotic method, yields identical results. However, the algorithm of the asymptotic
decomposition method is, in essence, simpler.

The principal conclusion that can be arrived at after a comparison of the two methods
is the following. In the asymptotic decomposition method, the operation of averaging,
which is used in Bogolyubov’s averaging method, is a certain way of constructing the
projection prF of the operator F.

In the asymptotic decomposition method, the centralized system is a direct analog of
the averaged system of Bogolyubov’s averaging method.

We refer to the averaging operation used in the asymptotic decomposition method to
construct the projection of an operator onto the algebra of the centralizer as the Bogolyubov
projector.
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The last statement means the following. Let us apply the asymptotic decomposition
method to Bogolyubov’s system in the standard form (3). Let us write out the operator
Fν of the right-hand side of (15) as

Fν = fν1(x, y)
∂

∂x1
+ · · ·+ fνn(x, y)

∂

∂xn
.

Define the Bogolyubov projection of the operator prFν as

prFν = 〈fν1(x, y)〉 ∂

∂x1
+ · · ·+ 〈fνn(x, y)〉 ∂

∂xn
,

where

〈fνk(x, y)〉=deff
0
νk(x) (18)

is an average value for coefficients fνk. This notion requires exact definition.
In Bogolyubov’s averaging method an average value is understood as

lim
T→∞

1
T

T∫
0

fνk(x, s)ds = f0
νk(x) < +∞, k = 1, n.

In our further exposition, definition (18) will be understood as an average value on the
group.

We hope that such a preview will make the main part of the lecture easier to follow.
We illustrate a further exposition of the material in the next two Subsections using two
physically motivated examples: nonlinear oscillators in plane and motion of a point on a
sphere. There are classical results for the first example and one can compare them with
the present approach. The second example is nontrivial as it cannot be considered by
existing methods in a similar way.

2 Examples: Models Connected with a Nonlinear
Oscillator in a Plane

2.1. Algorithm of asymptotic decomposition method in the space of ho-
mogeneous polynomials (group GL(2)). Along with the linear space V over P
generated by the elements x1, . . . , xn, we consider the linear space V⊗ν over P , which is
equal to the direct product of the space V taken ν times.

The vector row composed of the basis elements of V⊗ν is denoted by ˆ̂xmν . It is evident
that m1 = n and

ˆ̂xm1 = ‖x1, . . . , xn‖.

Let Q be a constant matrix of dimension mν × n with the elements qij ∈ P, where
i = 1, mν , j = 1, n, and q1, . . . , qn are the rows as matrix elements in the equality

q = ˆ̂xmνQ, q=def ||q1, . . . , qn||.

For an arbitrary sequence of matrices Q, the totality of differential operators

X = q1
∂

∂x1
+ · · ·+ qn

∂

∂xn
, qi ∈ V⊗ν ,
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yields the linear space over P which is denoted by B(V⊗ν). The matrix Q will be called a
matrix of the operator X.

Consider the system of two equations of the first order

ẋ′1 = x′2; ẋ′2 = −x′1 + ε (1− x
′2
1 ) x′2. (19)

The differential operator associated with system (19) is

U′
0 = U′ + ε Ũ′,

where

U′ = x′2
∂

∂x′1
− x′1

∂

∂x′2
; Ũ′ =

(
x′2 − x

′2
1 x′2

) ∂

∂x′2
.

Write these operators in the form

U′ = ˆ̂x
′
m1
F∂′, F =

∥∥∥∥ 0 −1
1 0

∥∥∥∥ .

Represent the operator Ũ as the sum

Ũ′ = Ũ′
⊗1 + Ũ′

⊗3 Ũ′
⊗i ∈ B(V⊗i), i = 1, 3,

where

Ũ′
⊗1 = ˆ̂x

′
m1
Qm1,1 ∂, Ũ′

⊗3 = ˆ̂x
′
m3
Qm3,1 ∂.

Calculate two approximations in the transformed operator (12)

U′
0 = U′ + εN′

1 + ε2 N′
2.

Calculate the operators S1 and S2, which can be obtained from the equations

[U, S1] = Ũ− pr Ũ;

[U1, S2] =
{
−[Ũ, S1]−

1
2

[S1, [U, S1]]
}
− pr {· · ·} (20)

upon the change of variables (14). Solve these equations in two steps. First, we find S1 :

S1 ≡ S⊗11 + S⊗31, S⊗i1 ∈ B (V⊗i), i = 1, 3,

where S⊗i1 ≡ ˆ̂xmi Γ1i ∂, i = 1, 3; Γ1i are rectangular matrices of the dimensions mi × n,
which are solutions of the system of independent algebraic equations

Fi Γ1i − Γ1iF = Qmi,1 − prQmi,1, F = AT , i = 1, 3. (21)

At the second step, we find S2. We can see that S2 ∈ B (V⊗5) implies the structure of the
right-hand parts of Eq. (20). We have to find a solution in the form of the sum

S2 =
5∑

i=1

S⊗i2, S⊗i2 = ˆ̂xmi Γ2i ∂, i = 1, 5,
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where Γ2i are solutions of the system of algebraic equations

Fi Γ2i − Γ2iF = Qmi,2 − prQmi,2, i = 1, 5.

Conduct the necessary calculations for the first approximation. Consider Eq. (21)
with the matrices F1, F2, F3 of the representation of the operator U in the subspaces
V⊗1, V⊗2, V⊗3.

Pass from Eqs. (21) to the equations in the spaces R̂(m1,n), R̂(m2,n)

G
(i)
F Γ̂i1 = Q̂mi,1 − pr Q̂mi,1,

where

G
(i)
F = Fi ⊗ E2 − Emi ⊗FT , i = 1, 3;

Γ̂1i, Q̂mi,1 are vector columns composed of rows of the matrices Γ1i, Qmi,1.
Taking into account that the difference Q̂mi,1−Q̂mi,1N belongs to the image T

(i)
F of the

operator G
(i)
F and is orthogonal to the kernel of the operator G

(i)T
F , we obtain the system

of linear algebraic equations for finding pr Q̂mi,1.

Finally, we have the operator U0 in the first approximation:

U0 = U + εN1,

where

N1 = prŨ = N⊗11 + N⊗13;

N⊗11 = ˆ̂xm1 Qm1,1N ∂ =
1
2

(
x1

∂

∂x1
+ x2

∂

∂x2

)
;

N⊗31 = ˆ̂xm3 Qm3,1N ∂ = −1
8

(
(x2

1 + x2
2) x1

∂

∂x1
+ (x2

1 + x2
2) x2

∂

∂x2

)
.

After similar calculations, we find the centralized system in the second approximation

dx1

dt
= x2 + ε

(
1
2
− 1

8

(
x2

1 + x2
2

))
x1+

ε2
(
−1

4
+

3
8

(
x2

1 + x2
2

)
− 11

128

(
x2

1 + x2
2

)2
)

x2;

dx2

dt
= −x1 + ε

(
1
2
− 1

8

(
x2

1 + x2
2

))
x2−

ε2
(
−1

4
+

3
8

(
x2

1 + x2
2

)
− 11

128

(
x2

1 + x2
2

)2
)

x1.

We can easily see that upon transformation of the variables by formulae

y1 =
√

x2
1 + x2

2, y2 = arctan
x1

x2
.
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the centralized system takes the form

dy1

dt
= ε

(
1
2
− 1

8
y2
1

)
y1;

dy2

dt
= 1− ε2

(
1
4
− 3

8
y2
1 +

11
128

y4
1

)
.

To pass to the solution of the initial Eqs. (19) in the second approximation, we have
to know the operator S2. Calculation of S2 is analogous to that of S1.

2.2. Procedures of normalization in the representation spaces of the
groups GL(2) and SO(2). Consider the nonlinear oscillator (1). All considerations
of Subsection 2.1 were based upon the invariance property of the subspaces V⊗1, V⊗2, . . .
which is associated with the system of zero approximation. The fact of invariance is
expressed by the relation

Uˆ̂xmj = ˆ̂xmjFj , j = 1, 2, . . .

where Fj is the representation matrix of U in the subspace V⊗j .
A natural question arises: are subspaces V⊗1, V⊗2, . . . unique invariant subspaces in

the linear space of homogeneous polynomials? It turns out that they are not.
Consider the linear space T⊗ that is the direct sum of subspaces T⊗1, T⊗2, T⊗3, . . .

with the bases

f (m1) = ‖ x1, x2 ‖ ,

f (m2) =
∥∥∥ 2x1x2, x2

2 − x2
1

∥∥∥ , (22)

f (m3) =
∥∥∥ 3 (x2

1 + x2
2)x1 − 4x3

1, 4x3
2 − 3 (x2

1 + x2
2)x2

∥∥∥ ,

· · · · · · · · ·

It is easy to verify that each subspace T⊗j is turned into itself by U, i.e., is invariant
with respect to it. To do so, it is sufficient to find representation matrices of U in these
subspaces

Uf (mj) = f (mj)Fj , Fj =
∥∥∥∥ 0 −j

j 0

∥∥∥∥ .

For a better understanding of the structure of the space T⊗, let us introduce new variables
ρ and ϕ by the formula

x1 = ρ sinϕ, x2 = ρ cos ϕ.

In new variables, basis vectors (22) are written down as follows

ˆ̂ϕmk
=

∥∥∥ ρk sin kϕ, ρk cos kϕ
∥∥∥ , k = 1, 2, . . .

So, passing to the space T⊗ ⊂ T (V ) means passing from the space of homogeneous poly-
nomials in two variables to the space of trigonometric functions (Fourier series).
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The just-described process of choosing a new representation space for the operator U
has a deep group-theoretical background. Let us consider it in detail.

Consider the set of four linearly independent operators

V11 = x1
∂

∂x1
, V12 = x1

∂

∂x2
, V21 = x2

∂

∂x1
, V22 = x2

∂

∂x2
, (23)

which generate a complete linear finite-dimensional Lie algebra BGL(2) of order four. From
(23), a general linear group GL(2) is restored. To write out the elements of this group in
explicit form, let us write down its general element through a Lie series

x′ = exp Vx, (24)

where

V = s11V11 + s12V12 + s21V21 + s22V22,

s11, s12, s21, s22 are group parameters which range in the neighborhood of zero.
We write down the series (24) in the finite form as

x′ = xeF1(s).

The matrix G(s) = eF1(s), where the matrix F1 is a representation matrix of V in the
subspace V⊗1, determines the general element of GL(2).

In light of the above considerations, we may say that the linear space of homogeneous
polynomials T (V ) is a representation space for the general linear group GL(n), n = 2.

The operator U of the system of zero approximation generates the rotation group
SO(2) in the plane. To find the explicit form of the elements of this group, we also make
use of a Lie series

x′ = exp (ϕU)x.

After the corresponding computations, we come to the result∥∥∥∥ x′1
x′2

∥∥∥∥ =
∥∥∥∥ cos ϕ sinϕ
− sin ϕ cos ϕ

∥∥∥∥ ∥∥∥∥ x1

x2

∥∥∥∥ .

Thus, the linear space of the trigonometric functions T⊗ is the representation space
for the rotation group SO(2) in the plane. Let us denote this space by TSO(2).

In the normal form method, the representation space for a general linear group GL(n)
is chosen as a representation space. In the asymptotic decomposition method, the repre-
sentation space for the subgroup of the same GL(n), is chosen as a representation space.

So, the normal form method, which makes use of a universal representation space of
the general linear group, does not consider the true algebraic structure of the system of
zero approximation.

Contrary to that, the asymptotic decomposition method is based essentially on a deep
connection between the representation theory for continuous groups and special functions
of mathematical physics. This theory has been intensively developed during the last
decades (see Vilenkin N.Ya. [19], Barut A., Roczka R. [20]).

2.3. Asymptotical decomposition algorithm for a perturbed motion on
SO(2). Let us consider the Van der Pol (19) system as a perturbed motion on SO(2). The
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system of zero approximation (19) yields the group SO(2). Pass to the polar coordinates
in (19)

x1 = ρ sinϕ, x2 = ρ cos ϕ. (25)

Finally, we obtain U ≡ ∂/∂ϕ.
The operator U has the representation matrix Fmn in the subspace T⊗n. This matrix

can be calculated by

Uf (n) = f (n)Fmn , Fmn =
∥∥∥∥ 0 −n

n 0

∥∥∥∥ .

Illustrate application of the asymptotic decomposition method to system (1) in the repre-
sentation space of T⊗. Calculate only the first approximation. Let one term S1 be in the
transformation (14) and the transformed operator be represented by the sum

U0 = U + εN1.

According to the general theory, we should consider the equation

[U, S1] = F1, F1=defŨ. (26)

After a change of variables (25), ∂/∂x1, ∂/∂x2 turn into L1, L2, respectively

L1 = sinϕ
∂

∂ρ
+

cos ϕ

ρ

∂

∂ϕ
, L2 = cos ϕ

∂

∂ρ
− sinϕ

ρ

∂

∂ϕ
.

Rewrite U, Ũ in new variables using L1,L2

U ≡ ∂

∂ϕ
≡ ‖ρ sinϕ, ρ cos ϕ‖FL,

Ũ = ‖ρ sinϕ, ρ cos ϕ‖Q11L + ‖ρ3 sin 3ϕ, ρ3 cos 3ϕ‖Q31L.

Write the operator of the transformation S1 following the structure of the right-hand part
of Eq. (26) in the form

S1 = S11 + S31,

where

S11 = ‖ρ sinϕ, ρ cos ϕ‖Γ11L,S31 = ‖ρ3 sin 3ϕ, ρ3 cos 3ϕ‖Γ31L,

Γ11,Γ31 are a unknown second-order square matrices . In the general case, they depend
on the variable ρ.

Substituting U, Ũ and S1 into Eq. (26), we obtain two independent subsystems of
linear algebraic equations

F1Γj1 − Γj1F = Qj1, j = 1, 2.

All the further calculations are similar to ones done in the previous subsection. We will
give the final results.
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Thus, the operator N1 defined by the matrix can be written in the final form

N1 ≡
(

1
2
− 1

8
ρ2

)
ρ sinϕL1 +

(
1
2
− 1

8
ρ2

)
ρ cos ϕL2 ≡ ρ

(
1
2
− 1

8
ρ2

)
∂

∂ρ
.

By the operator U0 = U+εN1, we restore the centralized system of the first approximation

ρ̇ =
ε

2

(
1− 1

4
ρ2

)
ρ, ϕ̇ = 1.

Comparison of the asymptotic decomposition algorithm in the representation space T⊗
of trigonometrical functions described in this Subsection with the analogous algorithm in
the space of polynomials T (V ) in the previous subsection shows a substantial decrease in
calculating effort. This fact takes place due to lowering the order of the representation
matrices Fj of the operator U in the subspaces T⊗j in comparison with the subspace V⊗j .
Really, in the first case, the order of the matrices Fj is unchangeable and is equal to 2. In
the second case, it grows proportionally to the index j.

Finally, let us compare the asymptotic decomposition algorithm with existing methods.
If the representation space T⊗ of the group SO(2) is chosen, we then obtain the results of
the Krylov–Bogolyubov asymptotic method. If the representation space V⊗ of the general
linear group GL(2) (the space of homogeneous polynomials) is chosen, then we obtain the
results of the normal forms method.

2.4. Group averaging for a perturbed motion on SO(2). Consider the second–
order system

ẏ1 = y2, ẏ2 = −y1 − εy3
1, (27)

which is equivalent to the Duffin equation.
After the change of variables

y1 = ρ′ sinϕ′, y2 = ρ′ cos ϕ′,

system (27) is turned into a system of standard form

ρ̇′ = −ε(ρ′)3
(
−1

8
sin 4ϕ′ +

1
4

sin 2ϕ′
)

,

ϕ̇′ = 1 + ε(ρ′)2
(

3
8

+
1
8

cos 4ϕ′ − 1
2

cos 2ϕ′
)

. (28)

Write down the operator U
′
0 associated with system (28)

U
′
0 = U

′
1 + εŨ′,

where

U
′
0 =

∂

∂ϕ′
, Ũ′ = b1(ρ′, ϕ′)

∂

∂ρ′
+ b2(ρ′, ϕ′)

∂

∂ϕ′
,

b1(ρ′, ϕ′) = (ρ′)3
(

1
8

sin 4ϕ′ − 1
4

sin 2ϕ′
)

,
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b2(ρ′, ϕ′) = (ρ′)2
(

3
8

+
1
8

cos 4ϕ′ − 1
2

cos 2ϕ′
)

. (29)

Let us apply the asymptotic decomposition algorithm to system (28) with averaging
on group SO(2), defined as

〈f(ρ, ϕ)〉 ≡ 1
2π

∫ 2π

0
f(ρ, ϕ)dϕ.

We restrict ourselves by the first approximation and consider the operator equation

[U,S1] = Ũ− pr Ũ, (30)

where S1 = γ1(ρ, ϕ)∂/∂ρ + γ2(ρ, ϕ)∂/∂ϕ. Compute the average value of coefficients (29).
According to the general theory,

pr Ũ =
3
8
ρ2 ∂

∂ϕ
.

Therefore, the centralized (averaged) system in the first approximation takes the form

ρ̇ = 0, ϕ̇ = 1 + ε
3
8
ρ2

Operator equation (30) is replaced by the system of differential equations

∂γj

∂ϕ
= bj(ρ, ϕ) + 〈bj(ρ, ϕ)〉, j = 1, 2.

Written out, such systems are easily integrated into trigonometric functions.

3 Examples: the Motion of a Point on a Sphere

3.1. Algorithm of the asymptotic decomposition method in the space of
homogeneous polynomials (group GL(3)). Consider the system of equations

ẋ′1 = x′2 − ε(x
′2
1 − x

′2
3 ),

ẋ′2 = x′3 − x′1 − ε2(x′1x
′
2 + x′2x

′
3), (31)

ẋ′3 = −x′2 + ε(x′2 + (x
′2
1 − x

′2
3 )).

Let us write down the operator associated with system (31)

U
′
0 = U

′ − εŨ
′
,

where

U′ = x′2
∂

∂x′1
+ (x′3 − x′1)

∂

∂x′2
− x′2

∂

∂x′3
,

Ũ′ = (x
′2
1 − x

′2
3 )

∂

∂x′1
+ 2(x′1x

′
2 + x′2x

′
3)

∂

∂x′2
+ (x′2 + (x

′2
1 − x

′2
3 ))

∂

∂x′3
.
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Making use of the notations introduced in Subsection 2.1, let us write down

U′ = ˆ̂x
′
m1
F∂′, Ũ′ = ˆ̂x

′
m1
Q1∂

′ + ˆ̂x
′
m2
Q2∂

′,

We restrict ourselves to computation of the first approximation. The transformed operator
has only two summands

U0 = U + εN1.

In that case, to find operators S1 of the transformation and the operator N1 of the
centralizer, one should consider the single operator equation

[U,S1] = Ũ− pr Ũ.

We omit intermediate calculations and give a final form of the centralized system

ẋ1 = x2 − ε(−1
4x2 + (x2

1 − x2
3)),

ẋ2 = x3 − x1 − ε(−1
4x3 + 1

4x1 + 2(x1x2 + x2x3)),

ẋ3 = −x2 − ε(1
4x2 − (x2

1 − x2
3)).

(32)

Further investigations of system (32) consist in the selection of fast and slow variables.
After the change of variables

y1 = x1 + x3, y2 = x2
1 + x2

2 + x2
3, y3 =

1√
2

arccot
x3 − x1√

2x2

it turns into

ẏ1 = 0, ẏ2 = −ε2(2y2 − y2
1)y1, ẏ3 = 1 +

1
4
ε.

3.2. Asymptotical decomposition algorithm for a perturbed motion on
SO(3). Again consider the problem of motion of a point on a sphere (31). The operator
U′ can be represented as a sum of two operators U

′
1,U

′
2

U
′
1 = x

′
2

∂

∂x
′
1

− x
′
1

∂

∂x
′
2

, U
′
2 = x

′
3

∂

∂x
′
2

− x
′
2

∂

∂x
′
3

.

Calculate the Poisson bracket of the operators U
′
1,U

′
2 and denote the result by U

′
3

U
′
3=def [U

′
1,U

′
2] = x

′
1

∂

∂x
′
3

− x
′
3

∂

∂x
′
1

.

The operators U
′
1,U

′
2,U

′
3 yield the finite-dimensional Lie algebra B3 as the relations

[U
′
2,U

′
3] = U

′
1, [U

′
3,U

′
1] = U

′
2.

imply.This algebra is one of the group SO(3) of three-dimensional space rotations. Thus,
the solution of the zero approximation system obtained from the perturbed system (31)
for ε = 0, can be written as the Lie series

x
′
j = et(U1+U2)xj , j = 1, 3. (33)



SYMMETRY IN NONLINEAR MECHANICS 125

Otherwise speaking, the solution (33) of the zero approximation system is an element
of SO(3). Use this fact while asymptotic decomposing system (31) in the representation
space of SO(3). The Hilbert space TSO(3) of the basic spherical functions can be considered.
A function on SO(3) in the linear space TSO(3) is represented by the convergent series

f ′ =
∞∑
l=0

l∑
m=−l

Cm
l Y m′

l , where Cm
l =

1
4π

∫ 2π

0

∫ π

0
f ′Y

m′

l sin θ′dθ′dϕ′.

Here Y m′
l denotes basic spherical functions (see [19]).

To use the representation space TSO(3), we should pass to the new variables ρ′, ϕ′, θ′

in the initial system (31).

x′1 = ρ′ sin θ′ cos ϕ′, x′2 = ρ′ sin θ′ sinϕ′, x′3 = ρ′ cos θ′, ρ′ =
√

x
′2
1 + x

′2
2 + x

′2
3 .

In these variables, U
′
1,U

′
2,U

′
3 take the form

U
′
1 = − ∂

∂ϕ′
, U

′
2 = sinϕ′

∂

∂θ′
+ cot θ′ cos ϕ′

∂

∂ϕ′
,

U
′
3 = − cos ϕ′

∂

∂θ′
+ cot θ′ cos ϕ′

∂

∂ϕ′
.

Write the operators L
′
1,L

′
2,L

′
3

L
′
1 =

− sinϕ′

ρ′ sin θ′
∂

∂ϕ′
+

1
ρ′

cos θ′ cos ϕ′
∂

∂θ′
+ sin θ′ cos ϕ′

∂

∂ρ′
,

L
′
2 =

cos ϕ′

ρ′ sin θ′
∂

∂ϕ′
+

1
ρ′

cos θ′ sinϕ′
∂

∂θ′
+ sin θ′ sinϕ′

∂

∂ρ′
,

L
′
3 =

− sin θ′

ρ′
∂

∂θ′
+ cos θ′

∂

∂ρ′
,

corresponding to the operators of partial differentiation ∂/∂x1, ∂/∂x2, ∂/∂x3 in new vari-
ables.

The operator U
′
associated with the zero approximation system can be written in new

variables as

U
′
f = f (m1)′FL′,

where

f (m1)′ = ‖ρ′ sin θ′ cos ϕ′, ρ′ sin θ′ sinϕ′, ρ′ cos θ′‖,

L′ = col ‖L′
1,L

′
2,L

′
3‖.

The perturbation operator Ũ
′
f in new variables can be represented as a sum of two oper-

ators

Ũ
′
f = Ũ

′
f1 + Ũ

′
f2,
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where

Ũ
′
f1 = f (1)′Qm1,1L

′, Ũ
′
f2 = f (2)′Qm2,1L

′.

By the operator

U
′
f0 = U

′
f − εŨ

′
f ,

we can easily restore the perturbed system (31) in new variables

ϕ̇′ = −1 + cot θ′ cos ϕ′ + εŨ
′
ϕ,

θ̇ = sinϕ′ + εŨ
′
θ, (34)

ρ̇ = εŨ
′
ρ,

where

Ũ
′
ϕ = Ũ

′
fϕ, Ũ

′
θ = Ũ

′
fθ, Ũ

′
ρ = Ũ

′
fρ

are known functions.
The techniques of application of the asymptotic decomposition algorithm in the first

approximation to system (34) in general is like to described above. Hence, we may cite
here the final form of the centalised system

We restore N1 from algebra of centralizer using the matrices pr Qm1,1,pr Qm2,1

N1 = N11 + N21,

where

N11 = f (1)pr Qm1,1L, N21 = f (2)pr Qm2,1L.

Using operator N1, we restore the centralized system of the first approximation

ϕ̇1 = −1 + cotθ cos ϕ + εN1ϕ,

θ̇ = sinϕ + εN1θ,

ρ̇ = εN1ρ,

where

N1ϕ = N1ϕ, N1θ = N1θ, N1ρ = N1ρ.

3.3. Group averaging for a perturbed motion on SO(3). Let us consider
system (34). Operator U ′ associated with the system of zero approximation of system
(34)

U ′ = (−1 + cotθ′ cos ϕ′)
∂

∂ϕ′
+ sinϕ

′ ∂

∂θ′

does not contain the variable ρ′.
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We begin with some definitions which are fundamental for an algorithm of averaging
on a noncommutative group. We assume that operators Sj in series (14) have the form

Sj = γj3(ϕ, θ, ρ)
∂

∂ρ
, ρ = 1, 2 · · · .

The motivation of such a form of operators Sj will become clear some later. Operators
Fν in the right part of equations (15) also can be written as a sum

Fν = Fνρ + F̄ν

where

Fνρ = fνρ(ϕ, θ, ρ)
∂

∂ρ
,

F̄ν = fνϕ(ϕ, θ, ρ)
∂

∂ϕ
+ fνθ(ϕ, θ, ρ)

∂

∂θ
.

The coefficients of Sj should be determined by the recurrent sequence of operator
equations

[U,Sν ] = Fνρ −Nνρ. (35)

Coefficient fνρ(ϕ, θ, ρ) of operator Fνρ is a function on the group SO(3) and hence may
be written as a series

fνρ = bνρ0 + fm1bνρ1 + fm2bνρ2 + · · · ,

where fm1, fm2, · · · are vector-rows forms of bases of invariant subspaces and bνρ0, bνρ1,
bνρ2, · · · are vector-columns of coefficients.

Similarly, the coefficient γν3(ϕ, θ, ρ) of the operator Sν can be written as

γν3 = aνρ0 + fm1aνρ1 + fm2aνρ2 + · · · ,

where aνρ0, aνρ1, aνρ2, · · · are vector-columns of unknown coefficients.
Operator equations (35) produce the sequence of algebraic equations

F1aνρ1 = bνρ1 (36)

F2aνρ1 = bνρ2

· · · · · · · · · · · ·

We suppose that equations (36) are solvable and

Nνρ = bνρ0(ρ)
∂

∂ρ
,

where

bνρ0(ρ) =
1
4π

∫ 2π

0

∫ π

0
fνρ(ϕ, θ, ρ)Y m

l sin θdθdϕ

is an average value of the function fνρ(ϕ, θ, ρ) on the group SO(3).
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The operator associated with system (34) will have the form after all necessary trans-
formations

U + ε(N1ρ + F̄1) + ε2(N2ρ + F̄2) + · · · .

The following system corresponds to this operator

ρ̇ = εb1ρ0(ρ) + (ε)2b2ρ0(ρ) + · · · ,

ϕ̇ = −1 + cotθ cos ϕ + εf1ϕ(ϕ, θ, ρ) + (ε)2f2ϕ(ϕ, θ, ρ) + · · · ,

θ̇ = sinϕ + εf1θ(ϕ, θ, ρ) + (ε)2f2θ(ϕ, θ, ρ) + · · · .

The first equation of this system for a slow variable describes the parameter ρ of the
manifold. The next two equations describe angle variables of motion of a point on the
manifold.

The algorithm of averaging on group given above is based on the further generalization
of normalization techniques. Here we have partial commutativity of operators of the
centralized system. Namely,

[U,Nνρ] ≡ 0,

but

[U, F̄ν ] 6≡ 0.
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