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Abstract

The method of one parameter, point symmetric, approximate Lie group invariants is
applied to the problem of determining solutions of systems of pure one-dimensional,
diffusion equations. The equations are taken to be non-linear in the dependent vari-
ables but otherwise homogeneous. Moreover, the matrix of diffusion coefficients is
taken to differ from a constant matrix by a linear perturbation with respect to an
infinitesimal parameter. The conditions for approximate Lie invariance are developed
and are applied to the coupled system. The corresponding prolongation operator
is derived and it is shown that this places a power law and logarithmic constraints
on the nature of the perturbed diffusion matrix. The method is used to derive an
approximate solution of the perturbed diffusion equation corresponding to impulsive
boundary conditions.

1 Introduction

Our interest in diffusion lies in the extension of the Richards equation, which describes the
movement of water in a homogeneous unsaturated soil, to cases describing the combined
transport of water vapour, heat and solute under a combination of gradients of soil tem-
perature, volumetric water content and solute concentration. The theory was formulated
by Philip and De Vries in [1] and [2] and is presented here in the form of Jury et al [3]
as applied to the case of pure coupled diffusion, so that gravitational advection terms are
omitted. In particular, for a vertical column of soil:

Z (u) =
∂Y
∂t

− ∂

∂x

(
K (Y)

∂Y
∂x

)
= 0, (1)

where:

u ≡
(
x, t,Y,Y′,Y′′, Ẏ

)
(2)

and where Y (x, t) is a vector {yi (x, t)} of soil temperature, moisture content and solute
concentration values as a function of soil depth x and time t. In addition, the dash and dot
indicate derivatives with respect to depth and time, respectively. Furthermore, K (Y) is a
matrix, often diagonally dominant, expressing the homogeneous, but non-linear diffusive
properties of the medium.
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Our main aim here is to extend our mathematical understanding of equation (1) by
exploring its approximate Lie symmetry group properties. In a recent paper, Wiltshire
[4], developed classical Lie symmetries of (1) with K (Y) constant and also for non-linear
cases with:

K (Y) = A
∏
i

(yi + βi)
Ri , (3)

where A, βi, Ri are constants. In fact, this is the only non-linear case admitting classical
symmetry and further, there are no examples of non-classical symmetry as defined by Hill
[5] .

In this paper, we consider the question of whether a choice of diffusion matrix K (Y)
which differs only slightly from a constant matrix Λ will approximately admit symmetries
which are of a different character from those given in [4]. In particular, we consider
equation (1) with

K (Y) = Λ + ελ (Y) , (4)

where ε is a small parameter and we use the theory of Fushchych and Shtelen [6], and
Baikov et al [7, 8] to determine the approximate Lie point symmetries. In this theory, the
classical infinitesimal Lie generator for a given partial differential equation with ε = 0 is
assumed to be known. The generator is then perturbed with respect to the small parameter
ε with a view to determining symmetries of the modified partial differential equation. We
will consider first-order perturbations only in the analysis.

In the context of our problem, the partial differential equation with the known Lie
point symmetry is

Z0 (v) =
∂Y0

∂t0
− Λ

∂2Y0

∂x2
0

= 0, (5)

where

v ≡
(
x0, t0,Y0,Y′

0,Y
′′
0, Ẏ0

)
(6)

and where it will be supposed that v and u differ by a first-order term in ε as folllows:

u = v+εv1 + o (ε) . (7)

The infinitesimal generator for the Lie symmetries is given by Wiltshire [4] . Equation (1)
with (5) may be written in the form:

Z (u) = Z0 (u) + εZ1 (u) = 0, (8)

where

Z1 (u) = − ∂

∂x

(
λ (Y)

∂Y
∂x

)
. (9)

Before describing the symmetry properties of (1), it is first necessary to define the
meaning of approximate point transformations.
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2 First-Order Approximate Lie Point Group
Transformations

The invariance properties of equation (1) will be analysed by defining the approximate
one-parameter group of transformations through:

x1 ≡ f (x, t,Y,a, ε) = f0 (x, t,Y,a) + εf1 (x, t,Y,a) + o (ε) , (10)
t1 ≡ g (x, t,Y, a, ε) = g0 (x, t,Y, a) + εg1 (x, t,Y, a) + o (ε) ,

Y1 ≡ H (x, t,Y, a, ε) = H0 (x, t,Y, a) + εH1 (x, t,Y, a) + o (ε) ,

where a is a group parameter, so that for example, in the case of (10)

f (x, t,Y, 0) = x, f (f (x, t,Y, a) , t,Y, b) = f (x, t,Y, a + b) . (11)

Similar rules also hold for second and third of (10). In addition, the familiar infinitesimal
generator will be written in the form:

L = ξ (x, t,Y,ε)
∂

∂x
+ η (x, t,Y,ε)

∂

∂t
+ π (x, t,Y,ε) · ∇, ∇ ≡

{
∂

∂yi

}
, (12)

but for approximate transformations we write:

ξ (x, t,Y,ε) = ξ0 (x, t,Y) + εξ1 (x, t,Y) + o (ε) , (13)
η (x, t,Y,ε) = η0 (x, t,Y) + εη1 (x, t,Y) + o (ε) ,

π (x, t,Y,ε) = π0 (x, t,Y) + επ1 (x, t,Y) + o (ε) .

Moreover, by direct analogy with Lie’s second theorem we can link the global and in-
finitesimal (expanded about a = 0) forms of the transformation (10) to (13) and obtain:

dx1

da
= ξ (x1, t1,Y1,ε) ,

dt1
da

= η (x1, t1,Y1,ε) ,
dY1

da
= π (x1, t1,Y1,ε) (14)

with x = x1, t = t1, π = π1 at a = 0.

3 Conditions for First-Order Approximate Invariance

In this section, we describe the general relationships which must hold for approximate
invariance of (1) . This necessitates a description of the approximate prolongation operator.

First note that substitution of equations (7) into (8) gives rise to:

Z (u) ≡ Z0 (v) + ε [Z1 (v) + (v1 · D)Z0 (v)] + o (ε) = 0, (15)

where

D =
(

∂

∂x
,

∂

∂t
,∇,∇Y ′ ,∇Ẏ ,∇Y ′′

)
, (16)

∇Y ′ =

{
∂

∂y′i

}
, ∇Y ′′ =

{
∂

∂y′′i

}
, ∇Ẏ =

{
∂

∂ẏi

}
. (17)

Clearly, from equation (5) it follows that:

Z0 (v) = 0, Z1 (v) + (v1 · D)Z0 (v) = 0. (18)
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Symmetry of equation (1) may be expressed with the aid of the prolongation operator:

P (u) ≡ ξ (u,ε)
∂

∂x
+ η (u, ε)

∂

∂t
+ π (u, ε) · ∇+ (19)

πx (u, ε) · ∇Y ′ + πt (u, ε) · ∇Ẏ + πxx (u, ε) · ∇Y ′′ ,

which may also be written in the form of an expansion about ε:

P (u) ≡ P0 (u) + εP1 (u) + o (ε)
= P0 (v) + ε [P1 (v) + ((v1 · D)p0 (v)) · D] + o (ε) , (20)

where

Pi (v) ≡ pi (v) · D
pi (v) ≡ [ξ (v) , η (v) , π (v) , πx (v) , πt (v) , πxx (v)]i , (21)

and i = 0, 1. In this case, P0 (v) is the prolongation operator generating the classical Lie
symmetry of equation (5) .

The components of pi (v) may be calculated in the usual way with the aid of:

πx = π′ − Ẏη′ + Y′ · ∇π −Y′ξ
′ −Y′ (Y′ · ∇

)
ξ − Ẏ

(
Y′ · ∇

)
η,

πt = π̇ −Y′ξ̇ + Ẏ · ∇π − Ẏη̇ −Y′
(
Ẏ · ∇

)
ξ − Ẏ

(
Ẏ · ∇

)
η, (22)

and

πxx = π′′ + 2Y′ · ∇π′−Y′ξ
′′ − Ẏη′′ +

(
Y′ · ∇

)2
π−2Y′ (Y′ · ∇

)
ξ′ −

2Ẏ
(
Y′ · ∇

)
η′ −Y′ (Y′ · ∇

)2
ξ − Ẏ

(
Y′ · ∇

)2
η −

2Ẏ′ (η′ + Y′ · ∇η
)
+ Y′′ ·

(
∇π−∇ξY′ −∇ηẎ

)
−

2ξ′Y′′ − 2
(
Y′ · ∇ξ

)
Y′′. (23)

The condition for first-order approximate invariance may be found by applying the pro-
longation operator to the differential equation (1) with the result that

P (u)Z (u) = 0 = P0 (v)Z0 (v) + ε [P1 (v)Z0 (v) +
((v1 · D)p0 (v)) · DZ0 (v) + P0 (v)Z1 (v) +
P0 (v) ((v1 · D)Z0 (v))] + o (ε) . (24)

It follows, by equating coefficients of ε, that approximate invariance occurs whenever:

P0 (v)Z0 (v) = 0, (25)

P1 (v)Z0 (v) + (v1 · D)P0 (v)Z0 (v) + P0 (v)Z1 (v) = 0. (26)

Equation (25) is, of course, the condition used to determine classical symmetry.
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4 Equations for First-Order Lie Symmetry

Following the results given by Wiltshire [4], equation (25) has been solved for the linear
coupled diffusion equation (5) with result that classical Lie symmetries may be summarized
in two cases:

Case (i): Γ (x, t) = (κ + βx) Λ−1,

P0 (v) =
(

λ +
µ

2
x− 2βt

)
∂ ∂x + (α + µt) ∂ ∂t + ΓY · ∇+

ax · ∇Y ′ + at · ∇Ẏ + axx · ∇Y ′′ ,
(27)

where κ, β, α, λ and µ are constant.

Case (ii): Γ (x, t) = qI,where q is constant. The corresponding generator may be obtained
from (27) by setting β = 0.

In both cases, it follows that

ax = Γ′Y+
(

Γ− µ

2

)
Y′, at = 2βY′+(Γ− µ) Ẏ, (28)

axx = 2Γ′Y′+(Γ− µ)Y′′. (29)

provided that Γ′ is set to zero in the second case. It follows that:

P0 (v)Z0 (v) = P0 (v)
{
Ẏ −ΛY

′′}
= (Γ− µ)

{
Ẏ −ΛY

′′}
. (30)

Clearly, this confirms that when the first of equations (18) is satisfied, then (25) also holds
as required.

It follows from substitution of (30) and (18) into (25) that:

P1 (v)Z0 (v) + P0 (v)Z1 (v) = (Γ− µ)Z1 (v) . (31)

The corresponding result for case (ii) may be obtained from (31) by putting µ = 0.
In both cases, the equation (31) may be expanded with the help of (28), (29), (5) , (9)

and also (22), (23) with the result that

[πt−Λπxx]1 − (ΓY · ∇) λ (Y)Y′′ −Y′ (ΓY · ∇)∇λ (Y)Y′ − λ (Y)axx−

(ax · ∇) λ (Y)Y′ − (Y′ · ∇) λ (Y)ax =

− (Γ− µ) {λ (Y)Y′′ + (Y′ · ∇) λ (Y)Y′} .

(32)

Without loss of generality, the suffix 1 may now be dropped so that:{
π̇ +

(
Ẏ · ∇

)
π −Y′

[
ξ̇ +

(
Ẏ · ∇

)
ξ
]
− Ẏ

[
η̇ +

(
Ẏ · ∇

)
η
]}
−

Λ
{
π′′ +

(
Y′′ · ∇

)
π + 2

(
Y′ · ∇

)
π′ +

(
Y′ · ∇

)2
π−

Y′
[
ξ′′ +

(
Y′′ · ∇

)
ξ + 2

(
Y′ · ∇

)
ξ′ +

(
Y′ · ∇

)2
ξ
]
−2Y′′ [ξ′ + (

Y′ · ∇
)
ξ
]
−

Ẏ
[
η′′ +

(
Y′′ · ∇

)
η + 2

(
Y′ · ∇

)
η′ +

(
Y′ · ∇

)2
η
]
− 2Ẏ′ [η′ + (

Y′ · ∇
)
η
]}
−
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{(ΓY · ∇) λ (Y) + [λ (Y) ,Γ]}Y′′ − (ΓY · ∇)
(
Y′ · ∇

)
λY′− (33)

2λΓ′Y′ −
(
Γ′Y · ∇

)
λ (Y)Y′ −

(
Y′ · ∇

)
λ (Y)

[
Γ′Y+ΓY′]+

Γ
(
Y′ · ∇

)
λ (Y)Y′ −

(
ΓY′ · ∇

)
λ (Y)Y′ = 0.

5 Solution of Determining Equations

This equation may be solved by equating the derivatives of Y to give:
C1 No derivatives : π̇ −Λπ′′ = 0
C2 Y′ :

−ξ̇Y′ − Λ (2Y′·∇π′ −Y′ξ′′)− 2λΓ′Y′ − (Γ′Y · ∇) λY′

− (Y′ · ∇) λΓ′Y = 0

C3 Ẏ :
(
Ẏ·∇

)
π−η̇Ẏ + ΛẎη′′ = 0

C4 Y′,Y′ :

−Λ (Y′ · ∇)2 π + 2ΛY′ (Y′ · ∇) ξ′ − (ΓY · ∇) (Y′ · ∇) λY′

− (Y′ · ∇) λΓY′ + Γ (Y′ · ∇) λY′ − (ΓY′ · ∇) λY′ = 0

C5 Y′,Y′,Y′ : ΛY′ (Y′ · ∇)2 ξ = 0
C6 Y′, Ẏ : −Y′

(
Ẏ · ∇

)
ξ + 2ΛẎ (Y′ · ∇) η′ = 0

C7 Ẏ, Ẏ : − Ẏ
(
Ẏ·∇

)
η = 0

C8 Ẏ,Y
′
,Y′ : ΛẎ (Y′ · ∇)2 η = 0

C9 Y′′ : −Λ {Y′′ · [∇π−2ξ′]} − [(ΓY·∇) λ + [λ Γ]]Y′′ = 0
C10 Y′′, Ẏ :Λ (Y′′ · ∇) ηẎ = 0
C11 Y′′,Y′ : Λ {Y′′ · [∇ξY′ + 2 (Y′ · ∇) ξ]} = 0
C12 Ẏ′ : 2ΛẎ′η′ = 0
C13 Ẏ′,Y′ :2ΛẎ′ (Y′ · ∇) η = 0.
These overdetermined equations, now including the suffix 1, may be solved by observing

that conditions C5-C8 and C10-C13 are uniquely satisfied by η1 = η1 (t) and ξ1 = ξ1 (x, t) .
In addition, from C3:

π1=η̇1Y + b (x, t) , (34)

where b (x, t) is an arbitrary function of x and t. Condition C9 may be solved with the
help of the following transformations:

Y =PX, Γ = PUP−1, ∇X = P T∇, ∇X =
{

∂

∂xi

}
, (35)

where the defined transformation produces the diagonalized matrix U with nonzero ele-
ments ui. It also follows that

(UX) · ∇X = (ΓY) · ∇. (36)
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Two distinct cases arise and these impose restrictions on the form of the matrix λ (Y):
(i): η̇1 − 2ξ′1 = 0, any Γ :

λ = A
∏

i x
ri + B (x, t) ,

∑
i

uiri = 0,

[Λ, A] = 0, [Λ, B] = 0,
(37)

where {ri} are constants and A,B (x, t) are matrices where the former is constant and the
latter varies with x, t.

(ii): η̇1 − 2ξ′1 6= 0, Γ = Λ−1 (κ + βx):

λ (Y) = Λ
∑

i

ri ln yi + B (x, t) , η̇1 − 2ξ′1 +
∑

i

uiri = 0, [Λ, B] = 0. (38)

No further restrictions are imposed as a result of C4. However, consideration of C1 followed
by C2 shows that β = 0, and in addition:

Γ = κΛ−1, η1 (t) = ᾱ + µ̄t, ḃ−Λb′′ = 0,

ξ1 (x, t) =

(
µ̄ +

∑
i

uiri

)
2

x + q̄.

(39)

Finally, the approximate Lie symmetry vector field or infinitesimal generator may be found
using:

L (x, t,Y,ε) = [ξ0 + εξ1]
∂

∂x
+ [η0 + εη1]

∂

∂t
+ [π0 + επ1] · ∇+ o (ε) , (40)

=⇒ L (x, t,Y,ε) =

(λ + εq̄) +

µ + ε

(
µ̄ +

∑
i

uiri

)
2

x

 ∂

∂x
+ (41)

[(α + εᾱ) + (µ + εµ̄) t]
∂

∂t
+ [ΓY+εb (x, t)] · ∇+ o (ε) .

6 Solution of a Coupled Diffusion Equation

By way of a particular example, we consider (41) with:

λ + εq̄ = 0, α + εᾱ = 0, µ̄ = 0,b (x, t) = 0, (42)
Γ = qI, P = I, ui = q,

∑
i

ri = 0.

The corresponding differential equation is:

∂Y
∂t

=
∂

∂x

{(
Λ + εA

∏
i

yri
i

)
∂Y
∂x

}
. (43)
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The symmetry vector field for (43) is:

L =
µ

2
x

∂

∂x
+ µt

∂

∂t
+ qY·∇, (44)

so that the global transformation (14) is defined through:

dx1

da
=

µ

2
x1,

dt1
da

= µt1,
dY1

da
= qY1, (45)

which means that:

x1 = x exp
µ

2
a, t1 = t expµa, Y1 = Y exp qa. (46)

It follows that the similarity variable ω and similarity ansatz are given by:

ω =
x

t
1
2

, Y (x, t) = t
q
µ Φ (ω) , (47)

and so (43) becomes:

q

µ
Φ−ω

2
dΦ
dω

=
d

dω

{(
Λ + εA

∏
i

φri
i

)
∂Φ
∂ω

}
, (48)

where φi ∈ Φ. This may be solved by writing:

Φ = Φ0 + εΦ1+o (ε) , (49)

and solving:

q

µ
Φ0−

ω

2
dΦ0

dω
= Λ

d2Φ0

dω2
, (50)

q

µ
Φ1−

ω

2
dΦ1

dω
= Λ

d2Φ1

dω2
+

d

dω

{
A
∏
i

(φ0)
ri
i

∂Φ0

∂ω

}
. (51)

If we take the particular case µ = −2q, then it is easy to show that

Φ0 (ω) = exp

(
−Λ−1ω2

4

)
b, (52)

Φ0 (ω) = exp

(
−Λ−1ω2

4

)
(

Λ−1ω

2

)2

A
∏
i

bri
i b

+ c (53)

where b, c are constant and bi ∈ b.
Finally, it may be noted that the initial condition

Y (x, 0) = Y0δ (x) , (54)

where the Dirac delta-function satifies:

δ (λx) = λ−1δ (x) , (55)

has a transformation rule identical to (46) . It follows that our solution satisfies an impulsive
initial condition.
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