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and Invariant Equations

Irina YEHORCHENKO

Institute of Mathematics, National Academy of Sciences of Ukräına,
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Abstract
It is well-known that symmetry properties are extremely important for choosing dif-
ferential equations which can be suitable for description of real physical processes.

We present functional bases of second-order differential invariants for various repre-
sentations of some extensions of the Poincaré group and for a set of m scalar functions
(e.g., for similarity and conformal groups). These results enable us to describe new
classes of nonlinear multi–dimensional invariant equations and to simplify the problem
of symmetry classification of second-order scalar partial differential equations.

0 Introduction

The concept of invariant is widely used in various domains of mathematics. In this pa-
per we investigate differential invariants within the framework of symmetry analysis of
differential equations.

Differential invariants and construction of invariant equations were considered by S.
Lie [1] and his followers [2, 3]. Tresse [2] proved the theorem on existence and finiteness
of a functional basis of differential invariants. However, there exist few papers devoted
to construction of differential invariants for specific groups involved in mechanics and
mathematical physics in explicit form.

Knowledge of differential invariants of a certain algebra or group facilitates classifi-
cation of equations invariant with respect to this algebra or group. There are also some
general methods for investigation of differential equations which need the explicit form of
differential invariants for symmetry groups of these equations´ (see, e.g., [3, 4]).

A brief review of our investigation of second-order differential invariants for the Poincaré
and Galilei groups is given in [5, 6]. Our results on functional bases of differential invari-
ants are founded on Lemma about functionally independent invariants for the proper
orthogonal group and for two n-dimensional symmetric tensors of order 2 [7].

We should like to stress that we consider functionally independent invariants of tensors
but not irreducible ones, as in the classical theory of invariants.

Bases of irreducible invariants for the group O(3) and three-dimensional symmetric
tensors and vectors are adduced in [8].

DEFINITION 1. A maximal set of functionally independent invariants of order r ≤ l
of the Lie algebra L is called a functional basis of the l th-order differential invariants for
the algebra L.
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We consider invariants of order 1 and 2, and we need the first and second prolongations
of the operator

X = ξi∂xi + ηr∂ur (1)

(see, e.g., [9–12])

1
X = X + ηr

i ∂ur
i
,

2
X =

1
X + ηr

ij∂ur
ij
,

the coefficients ηr
i and ηr

ij taking the form

ηr
i = (∂xi + us

i∂us)ηr − ur
k(∂xi + us

i∂us)ξk,

ηr
ij = (∂xi + us

j∂us + us
jk∂us

k
)ηr

i − ur
ik(∂xj + us

j∂us)ξk.

While writing out lists of invariants, we shall use the following designations

ua ≡ ∂u
∂xa

, uab ≡ ∂2u
∂xa∂xb

,

Sk(uab) ≡ ua1a2ua2a3 · · ·uak−1ak
uaka1 ,

Sjk(uab, vab) ≡ ua1a2 · · ·uaj−1ajvajaj+1 · · · vaka1 ,

Rk(ua, uab) ≡ ua1uak
ua1a2ua2a3 · · ·uak−1ak

.

(2)

Here and further we mean summation over repeated indices from 1 to n. In all lists of
invariants, k takes values from 2 to n and j takes values from 0 to k. We shall not discern
upper and lower indices with respect to summation: for all Latin indices

xaxa ≡ xax
a ≡ xaxa = x2

1 + x2
2 + · · ·+ x2

n.

When we calculate second prolongations with the usual Lie technique (see e.g. [9]),
we imply that action of an operator of the form Xab∂uab

, where Xab are some functions,
is as follows:

Xab∂uab
(ucducd) = 2Xabuab; ∂uab

ucd = δacδbd.

With this assumption, ∂uab
uba = 0, a 6= b.

1 Differential Invariants for the Euclid Algebra

We consider the Euclid algebra AE(n) defined by the basis operators

∂a ≡
∂

∂xa
, Jab = xa∂b − xb∂a. (3)

Here and further, the letters a, b, c, d, when used as indices, take values from 1 to n, n
being the number of space variables (n ≥ 3).

The algebra AE(n) is an invariance algebra for a wide class of multi-dimensional scalar
equations involved in mathematical physics – the Schrödinger, heat, d’Alembert equations,
etc.
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In this section we shall explain in detail how to construct a functional basis of second-
order differential invariants for the algebra AE(n). This basis will be used further to find
invariant bases for various algebras containing the Euclid algebra as a subalgebra.

1.1 MAIN RESULTS

THEOREM 1. There is a functional basis of second-order differential invariants for the
Euclid algebra AE(n) with the basis operators (3) for a scalar function u = u(x1, ..., xn)
consisting of these 2n + 1 invariants

u, Sk(uab), Rk(ua, uab). (4)

THEOREM 2. Second-order differential invariants of the algebra AE(n) (1.1) for a
set of scalar functions ur, r = 1, ...,m, can be represented as functions of the following
expressions:

ur, Sjk(u1
ab, u

r
ab), Rk(ur

a, u
1
ab). (5)

Proofs of these theorems can be found in [7].

1.2 BASES OF INVARIANTS FOR THE EXTENDED EUCLID ALGEBRA
AND CONFORMAL ALGEBRA

The extended Euclid algebra AE1(n) for one scalar function is defined by the basis oper-
ators ∂a, Jab (3) and D depending on a parameter λ:

D = xa∂a + λu∂u

(
∂u =

∂

∂u

)
. (6)

The basis of the conformal algebra AC(n) consists of the operators ∂a, Jab (3), D (6)
and

Ka = 2xaD − xbxb∂a. (7)

THEOREM 3. There is a functional basis for the extended Euclid algebra that has the
following form

(1) when λ 6= 0:

Rk(ua, uab)
uk(1−2/λ)+1

,
Sk(uab)
uk(1−2/λ)

; (8)

(2) when λ = 0:

u,
Rk(ua, uab)

(uaa)k
,

Sk(uab)
(uaa)k

(k 6= 1); (9)

a functional basis for the conformal algebra has the following form:
(1) when λ 6= 0:

Sk(θab)uk(2/λ−1), (10)

(2) when λ = 0:

u, Sk(wab)(uaua)−2k (k 6= n), (11)
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where

θab = λuab + (1− λ)uaub
u − δab

ucuc
2u ,

wab = ucuc

(
uab + δab

2− nudd

)
− uc(uaubc + ubuac),

(12)

δab being the Kronecker symbol.
Proofs of Theorem 3 and all theorems below can be performed using the standard Lie

algorithm [9, 10].

DEFINITION 2. Tensors θa and θab of order 1 and 2 are called covariant with respect
to some algebra L = 〈Jab, Xi〉 if

Xiθa = σi
abθb + σiθa,

Xiθab = ρi
acθcb + ρi

bcθac + ρiθab;
(13)

Xi are operators of the form (1), ρi, σi are some functions, σi
ab, ρi

ab are some skew-
symmetric tensors.

It is easy to show that the expressions Sk(θab), Rk(θa, θab), where θa, θab are tensors
covariant with respect to the algebra L, are relative invariants of this algebra.

The fact that θab and wab (12) are covariant with respect to the conformal algebra
AC(n) can be verified by direct substitution of these tensors into the invariance conditions

for the operators
2
D and

2
Ka.

Note 1. When λ 6= 0, covariant tensors exist for AC(n) of order 2 only; when λ = 0,
the tensors wab (12) and ua are conformally covariant but Sk(wab) and Rk(ua, wab) are
dependent.

THEOREM 4. Second-order differential invariants for a vector function u = (u1, ...um)
and for the algebra AE1(n) = 〈∂a, Jab, D〉, the operator D having the form

D = xa∂a + λur∂ur (14)

with summation over r from 1 to m, can be represented as functions of the following
expressions:

(1) when λ 6= 0:

ur

u1
(r = 2, ...,m),

Sjk(u1
ab, u

r
ab)

(u1)k(1−2/λ)
,

Rk(ur
a, u

1
ab)

(u1)k(1−2/λ)+1
;

(2) when λ = 0:

ur, Rk(ur
a, u

1
ab) · (u1

aa)
−k, Sjk(u1

ab, u
r
ab) · (u1

aa)
−k

(when r = 1 then k 6= 1);
the corresponding basis for the conformal algebra AC(n) = 〈∂a, Jab, D, Ka〉, where

Ka = 2xaD − xbxb∂a

has the following form:



190 I. YEHORCHENKO

(1) when λ 6= 0:

Sjk(θr
ab, θ

1
ab)(u

1)k(2/λ−1),
ur

u1
, Rk(θr

a, θ
1
ab)(u

1)k(2/λ−1)−1 (r = 2, ...,m); (15)

(2) when λ = 0:

ur(r = 1, ...,m), (u1
du

1
d)
−2kSjk(w1

ab, w
r
ab), (u1

du
1
d)
−2kRk(ur

a, w
1
ab) (r = 2, ...,m) (16)

(for the set of invariants (u1
du

1
d)
−2kSk(wab), k does not take the value n); the tensors

θr
ab, w

r
ab are constructed similarly to (13) and

θr
a =

ur
a

ur
− u1

a

u1
.

1.3 DIFFERENTIAL INVARIANTS OF THE ROTATION ALGEBRA

The rotation algebra is defined by basis operators Jab (3).
Second-order invariants of this algebra for m scalar functions ur are constructed with

xa, u
r, ur

a, wab similarly to invariants of the Euclid algebra.

THEOREM 5. There is a functional basis of second-order differential invariants for
the algebra AO(n) that has the form

ur, Sjk(u1
ab, u

r
ab), Rk(ur

a, u
1
ab), Rk(xa, u

1
ab); r = 1, ...,m;

the corresponding basis of invariants for the algebra 〈Jab, D〉, where D is defined by (14),
consists of the expressions

ur

u1
(r = 2, ...,m),

Sjk(u1
ab, u

r
ab)

(u1)k(1−2/λ)
,

Rk(ur
a, u

1
ab) · (u1)2k/λ−1−k,

Rk(xa, u
1
ab) · (u1)2/λ(k−2)−k+1, when λ 6= 0;

ur, Rk(ur
a, u

1
ab) · (u1

aa)
−k,

Sjk(u1
ab, u

r
ab) · (u1

aa)
−k (k 6= 1 when r = 1),

Rk(xa, u
1
ab) · (u1

aa)
2−k when λ = 0.

A basis of invariants for the algebra 〈Jab, D, Ka〉, when λ 6= 0, consists of the expressions
(15) and

Rk(xa, θ
1
ab)

x2(u1)(k−1)(1−2/λ)
, k = 2, ..., n + 1;

when λ = 0, it consists of the expressions (16) and

Rk(xa, w
1
ab)

x2(w1
aa)k−1

(x2 = xaxa).



SECOND-ORDER DIFFERENTIAL INVARIANTS 191

2 Differential Invariants of the Poincaré
and Conformal Algebra

In this section we consider differential invariants of the second order for a set of m scalar
functions

ur = ur(x0, x1, ..., xn), n ≥ 3.

The Poincaré algebra AP (1, n) is defined by the basis operators

pµ = igµν
∂

∂xν
,

Jµν = xµpν − xνpµ,

(17)

where µ, ν take values 0, 1, ..., n; summation is implied over repeated indices (if they are
small Greek letters) in the following way:

xνxν ≡ xνx
ν ≡ xνxν = x2

0 − x2
1 − · · · − x2

n,

gµν = diag (1,−1, ...,−1).
(18)

We consider xν and xν equivalent with respect to summation not to mix signs of
derivatives and numbers of functions.

Quasilinear second-order invariants of the Poincaré algebra were described in [13].

THEOREM 6. There is a functional basis of second-order differential invariants of the
Poincaré algebra AP (1, n) for a set of m scalar functions ur consisting of

m(2n + 3) + (m− 1)
n(n + 1)

2

invariants

ur, Rk(ur
µ, u1

µν), Sjk(ur
µν , u

1
µν).

In this section, everywhere k = 1, ..., n + 1; j = 0, ..., k; r = 1, ...,m.
For the extended Poincaré algebra AP̃ (1, n) = 〈pµ, Jµν , D〉, where

D = xµpµ + λurpur (19)

(pur = i(∂/∂ur), summation over r from 1 to m is implied ) the corresponding basis has
the following form:
(1) when λ = 0:

ur, Sjk(ur
µν , u

1
µν) · (u1

αα)−k;

(2) when λ 6= 0:

ur

u1
, Sjk(ur

µν , u
1
µν)(u

1)2k/λ−k−1, Rk(ur
µ, u1

µν)(u
1)k(2λ−1),

where Sjk, Rk are defined similarly to (2) and summation over small Greek indices is of
the type (18).
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For the conformal algebra AC(1, n) = 〈pµ, Jµν , D, Kµ〉, where

Kµ = 2xµD − xνxνpµ

(D being the dilation operator (19)), the corresponding basis consists of the expressions

Sjk(θr
µ, θ1

µν) · (u1)k(2/λ−1),
ur

u1
, Rk(θr

µ, θ1
µν) · (u1)k(2/λ−1)−1;

when λ 6= 0; r = 2, ...,m, there is no summation over r; conformally covariant tensors
have the form

θr
µ =

ur
µ

ur −
u1

µ

u1 ,

θr
µν = λur

µν + (1− λ)
ur

µur
ν

ur − gµν
ur

βur
β

2ur

When λ = 0, the corresponding basis of invariants for the conformal algebra has the
form

ur, Sjk(wr
µν , w

1
µν) · (u1

αu1
α)−2k,

Rk(ur
µ, w1

µν) · (u1
αu1

α)1−2k, r = 2, ...,m;

the tensors (wr
µν),

wr
µν = ur

αur
α

(
ur

µν −
gµν

1− n
ur

ββ

)
− ur

β(ur
µur

βν + ur
νu

r
βµ)

are conformally invariant (there is no summation over r).
Similarly to the results of Section 1.4, it is possible to construct invariants of the

algebras 〈Jµν〉, 〈Jµν , D〉, 〈Jµν , D, Kµ〉.
The obtained results allow us to construct new nonlinear multi-dimensional equations,

e.g., the equation

uαuα

1− n
uνν − uµuνuµν = (uνuν)2F (u),

where F is an arbitrary function, is invariant under the algebra AC(1, n), λ = 0.
There is another quasi-linear relativistic equation with rich symmetry properties

(1− uαuα)uµµ − uαuµuαµ = 0,

that is the Born–Infeld equation. Symmetry and solutions of this equation were investi-
gated in [11,14]. This equation is invariant under the algebra AP (1, n + 1) with the basis
operators

JAB = xApB − xBpA, A, B = 1, ..., n + 1; xn+1 ≡ u.

Let us consider a class of equations

uµνuµν = F (uµµ, uµuνuµν , uµuµ, u).
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It is evident that they are invariant with respect to the Poincaré algebra AP (1, n) but a
straightforward search for conformally invariant equations from this class with the stan-
dard Lie technique requires a lot of cumbersome calculations. Using of differential invari-
ants turns this problem into one of elementary algebra, e.g., if λ 6= 0,

F − uµνuµν = − 1
λ

S2(θµν) + u2(1−2/λ)φ(S1(θµν)u2/λ−1)

where θµν is of the form (1.24) and φ is an arbitrary function. Whence

F = u2(1−2/λ)φ
(
u2/λ−1

(
uµµ − λ + n

λ
uαuα

u

))
−

1
λ2u2 (λ2 + n2)(uαuα)2 − 2(1− α)

λu uµuνuµν + 2uµµuαuα

λu .

It is useful to note that besides traces of matrix powers (3), one can utilize all possible
invariants of covariant tensors θr

µν , wr
µν to construct conformally invariant equations.

3 Differential Invariants of an Infinite-Dimensional
Algebra

It is well-known that the simplest first-order relativistic equation – the eikonal or Hamilton
equation

uαuα ≡ u2
0 − u2

1 − · · · − u2
n = 0 (20)

is invariant under the infinite-dimensional algebra AP∞(1, n) generated by the operators
[11, 15]

X = (bµνxν + aµ)∂µ + η∂u, (21)

−bµν = bνµ, aµ, η being arbitrary differentiable functions of u. Equation (20) is widely
used in geometrical optics.

In this section, we describe a class of second-order equations invariant under the algebra
(21).

It is easy to show that the tensors

θµ = uµ

(uαuα)1/2 ,

θµν =
uµνuβuβ + uββuµuν − uβuβµuν − uβuβνuµ

(uαuα)3/2

(22)

are covariant under the algebra AP∞(1, n) (21).

THEOREM 7. The equations of the form

Sk(θµν) = 0, k = 1, 2, ..., (23)

Sk being defined as (2), are invariant with respect to the algebra AP∞(1, n) (21).
The problem of description of all such equations is more difficult and we do not consider

it here.
Convolutions of the form

R(θµ, θµν)
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appear to be functionally dependent on the above.
Let us investigate in more detail a quasi-linear second-order equation of the form

uµuµνuν − uµuµuαuα = 0. (24)

THEOREM 8. When n ≥ 2, Equation (24) is invariant with respect to the algebra
AP̃∞(1, n) with generators of the form

X + d(u)xµpµ,

X is of the form (21), d(u) is an arbitrary function of u.
Let us present another example of the AP̃∞(1, n)-invariant equation:

uµνuµν · uβuβ − 2uµuβνuµνuβ − (2u)2uβuβ = 0.

4 Conclusion

It is well-known that a mathematical model of physical or some other phenomenon must
obey one of the relativity principles of Galilei or Poincaré. Speaking the language of
mathematics, we can say that it means that equations of the model must be invariant
under the Galilei or the Poincaré groups. Having bases of differential invariants for these
groups (or for the corresponding algebras), we can describe all invariant scalar equations,
or sort the invariant ones out of a set of equations.

Construction of differential invariants for vector and spinor fields presents more compli-
cated problems. First-order invariants for a four-dimensional vector potential were found
in [16]. The cases of spinor and multi-dimensional vector Poincaré–invariant equations
and corresponding bases of invariants are still to be investigated.
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