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1 Introduction

The paper presents a survey of some new results concerning the approach to construction
of explicit solutions for nonlinear evolution equations

ou

Z_F 1

= Flu], (1)
proposed in [1, 2]. Here we consider real scalar functions u of two variables z,¢ € R' and

P _
differential operators F' of the form Flu| = F(x,u, gu’ e gZ) Let fi(x), i = 1,k, be
x x

a set of linearly independent functions and Wj denote the linear span of them:

The space is said to be invariant with respect to F if F[Wy] C Wy, i.e., if there exist some
~ k k-
functions Fj;, such that F{Z Cifi(m)} = Y2 Fi(Cy,...,Ch) fi(x) YC; € RY.
i=1 i=1

The idea of the approachiis very simpleT if the linear space Wy, is invariant under the
operator F', then equation (1) possesses solutions of the form

k
u(w,t) =Y @i(t) fi(x), (3)
i=1
where coefficients p1(t), ..., or(t) satisfy the dynamical system
dop;(t ~ .
@dt( ) Ber(®),....on(t)), i=TF

Examples of solutions of type (3) for different problems are well-known in the literature,
see, e.g., [3-8]. A rich variety of new examples was obtained in [2] and in succeeding
papers [9-11].

The main problem arising in this context is the problem ”F — W}”: to construct
for a given operator F' all invariant spaces Wy,. Here we consider some results concerning
this problem as well as the inverse one. Note that every linear space (2) can be defined as
the space of solutions of some linear ordinary differential equation

Copyright © 1996 by Mathematical Ukraina Publisher.

All rights of reproduction in any form reserved.



INVARIANT LINEAR SPACES AND EXACT SOLUTIONS 165

Lly] = ao(x)y(k) + al(a:)y(k_l) +.o ot ap_1(2)y + ar(z)y = 0, (4)

for which the functions f;(z), i = 1,k, form a fundamental system of solutions (FSS).
Then the invariance condition of W, takes the form:

LIFly]]

0. (5)
L[y]=0

This condition leads to an overdetermined system for the coefficients of equation (4) and
provides the description of all invariant spaces of given order k (see examples in [12,
14]). Note also that the condition (5) is actually the invariance criterion of equation (4)
under the Lie-Bécklund operator X = F[y]0/dy and therefore we can interpret all results
obtained in terms of symmetries of linear ODEs [12-14].

2 The problem “W;, — F7”

Along with the original problem the inverse one is of interest: given Wy, find all F' (possibly
from some special class). Precisely this approach was applied in [2] to construct all possible
quadratic differential operators of the second order possessing fixed invariant spaces of
power, exponential or trigonometrical type. The next theorem provides the complete
solution of this problem. In the following we consider only the operators

Fly) = F(z,y.9,...,y"), (6)

of the order p < k—1, because the higher derivatives can be excluded by virtue of equation
(4) defining the invariant space.

Theorem 1. Every operator (6) possessing the invariant space (2) is given by

k
i=1
where A'(I1,...,1I},), i = 1,k, are arbitrary functions of the first integrals of the corre-

sponding equation (4).

The proof is given in [12]. To complete the discussion of the inverse problem, we should
notice only that the full set of the functionally independent first integrals can be easily
found (without any integrations) if a FSS of equation (4) is known. We consider here only
one illustrating example, for more examples see [12].

Ezxample 1. Choosing a 2-dimensional invariant space in the form
Wy =L{e",e™"} (&y" —y=0),

we find in accordance with (7) the general expression for the operators F:
Fly] = ANI1, b)e" + A*(I1, Ib)e ™,

where
L= —ye", L=y +ye ™
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One can use this expression to describe operators satisfying some additional conditions.
For instance, operators which do not depend explicitly on z have the form

Flyl =y A(J) +yB(J),

where A and B are arbitrary functions of J = ¢/ 2_ y?. Special cases of the last expression
are

Pl =10 +y), Bl=yy° -,

Byl =y?—v*) ~ Filyl=y"(y" -y,

where ”tilde” denotes equivalence on the invariant space. These operators allow to con-
struct various evolution equations possessing solutions of the given form

u(z,t) = p1(t)e” + pa(t)e ™,
for example, the following ”diffusion” equations:
Up = Ugg + (Up +u) 70, U = Uge + (2 —u?), = (U2 — u?)ugy,

etc. Here we take into account that the space is also invariant under the operator Flu] =

Ugq -

3 The problem “F — W}”

Let us return to the original problem: to construct all invariant spaces for a given operator.
The following statement establishes the upper bound on the dimension of an invariant
space.

Theorem 2 [13, 14]. If a linear space Wy, is invariant under a nonlinear operator (6) of
the order p, then
k<2p+1.

Note that for an arbitrary p there exist nonlinear operators possessing invariant spaces of
the maximal dimension 2p + 1 (for example: Fly] = (y®)2, Wopy1 = L{1,z,...,2%P}).
The natural problem is to describe all operators of this kind. For nonlinear operators of the
first and the second orders this problem was considered in [15]. It was shown that every
such operator should necessarily be quadratic in y and in its derivatives. Classification of
the operators was given with respect to some equivalence transformations. To illustrate
these results, we restrict ourselves to nonlinear operators of the first order, which do not
depend on x. The operators are considered up to constant factors. Denoting by F3 the set
of such operators possessing three-dimensional invariant spaces, we obtain the following
result.

Proposition 1. The set F3 is exhausted by the operators
Fily) =y* + Ny’ + Ay + By + C

and
Byl = (y + My)* + Ay’ + By + C,
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where A, B, C, M, N are arbitrary constants, M # 0. The corresponding invariant spaces
are, in the case of F1:

Wy = L{1,sin(vV'Nz),cos(vVNz)} (N >0), Ws=L{l,z,2’} (N =0),

W3 = L{1, sh(V—Nz),ch(v—Nz)} (N <0),
and in the case of Fy:
W3 = L{1,exp(—Muz/2),exp(—Mzx)}.
Note that these spaces are also invariant under an arbitrary linear differential operator

with constant coefficients. This fact is used in the following example taken from [7].

Ezample 2. Consider the parabolic equation
U = Ugg + U5 + au® + Bu+ (8)
connected via the transformation v = Inv with the equation
V¢ = Vgp +v(aIn®v 4 Blnv 4 ) (9)

describing certain properties of combustion in blow-up processes. For the sake of definite-
ness, suppose that @ = 1. In accordance with Proposition 1 Eq. (8) admits solutions of
the form

u(z,t) = p1(t) + p2(t) sinx + p3(t) cos z. (10)
The coefficients ¢;(t) satisfy the system

D=+ s+ @3+ Bo1+7, ¢2=p2201+8-1), ¢3=3(201+8—1).

4 Generalizations

The following remarks illustrate some possible generalizations of this approach.

4.1. The trivial observation is that the approach can be easily extended to equations
(1) with arbitrary linear differential operators (in t) on the left-hand side. For instance,
instead of Galaktionov—Posashkov’s equation (8) one can consider a more general equation
of the second order

a(t)ug + b(t)us = Uy + u2 + au® + Bu + v

(with arbitrary a(t), b(t)) also possessing solutions (10) but, of course, with different ¢;(¢).
For other examples see [1, 2].

It is interesting that a more general situation, when the operator on the left-hand
side becomes nonlinear, does not exclude the existence of solutions of type (3). For more
details see [16], where a method of generalized separation of variables is proposed, and
also [17].

4.2. There are many examples, where the original equation has no invariant spaces, but
the spaces appear after some change of variables and the problem reduces to constructing
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of such transformations, see [2], [7-10]. The illustration was actually given by Example 2,
because it is easily shown that Eq. (9) has no invariant spaces. It is interesting to note that
up to translations and dilations of variables equation (9) is the most general semilinear
diffusion equation of the form v; = vy, + ¢(v) gaining three-dimensional invariant spaces
after some transformation v = f(u) (the higher dimensional invariant spaces are impossible
in this case).

4.3. Applications of the method to the systems of equations were discussed in [12], where
in particular an analog of Theorem 1 was established. Here is an illustrating example
taken from that work.

Ezample 3. Let us consider the system
Up = —Vpy — v v (u® 4+ 0?), v = Uy + v (u? +0?),
being a real representation of the cubic Schrédinger equation
12t + 2w + V |z|2z =0,
with z = uw +iv (v = const). The (vector) operator on the right-hand side has the

two-dimensional invariant space Wo = L{fy, £}, where f; = (cosz, sinz)T, f, = (—sinz,
cos ). Therefore we can look for solutions of the form

(2) =00 (537) o0 (2)

Integrating the system on the coefficients @1 (t), 2(t) and rewriting solution in the complex
form, one can obtain the travelling wave solution

z=u+iv=Crexp{i[z+ (C3v — 1)t + Cy)},

with arbitrary real constants C and Cs.

4.4. In conclusion, we point out the papers [2, 7, 10, 11], where examples of solutions of
type (3) for multidimensional evolution equations are given.

5 Final remark

Possibly one of the most general methods for determining special solutions to nonlinear
PDEs is the method of differential constraints and many other methods can be treated
as its particular cases. But, of course, "the main difficulty with this approach is that it
appears to be too general to practical use” [20]. The method considered above is not so
general: it is in fact a method of the simplest linear ordinary differential constraints. But
this simplicity allows to obtain more complete results. Along with many applications given
in the cited papers, this makes the method very attractive. Here we have no opportunity
to discuss the approach in context of other methods and refer the reader to [18] and to
the survey papers [19,20].
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