
Nonlinear Mathematical Physics 1996, V.3, N 1–2, 85–89.

Symmetry Analysis of Nonlinear PDE

with A “Mathematica” Program SYMMAN

Evgenii M. VOROB’EV †

Department of Applied Mathematics, Moscow Institute of Electronics
and Mathematics, 3/12 B, Vuzovskii per., Moscow 109028, Russian Federation,
E-mail: emv@aplmat.miemstu.msk.su

Abstract

Computer-aided symbolic and graphic computation allows to make significantly easier
both theoretical and applied symmetry analysis of PDE. This idea is illustrated by
applying a special “Mathematica” package for obtaining conditional symmetries of
the nonlinear wave equation ut = (u ux)x invariant or partially invariant under its
classical Lie symmetries.

1 Introduction

Sophus Lie’s approach to classical symmetries reduces their computation to solving overde-
termined systems of linear differential equations for coefficients of vector fields of infinites-
imal symmetries. Although this kind of computation follows the clear algorithm it yields
simple in structure but sometimes enormous in volume calculations with intermediate ex-
pressions containing hundreds and thousands of terms for high-order or multidimensional
partial differential equations. After contributions of Birkhoff [1] and Ovsiannikov [2], the
classical Lie symmetry theory got its renaissance. Remark that Ovsiannikov was first who
stimulated the attempts to use symbolic computer-aided symmetry calculations held in
Novosibirsk in the sixties [2].

This article deals with non-classical conditional symmetries [3–6]. The algorithm for
obtaining infinitesimal conditional symmetries is essentially the same method of Lie’s de-
termining equations but these equations are nonlinear and less in number. G.J. Reid’s
triangularization algorithm [8] or E.L. Mansfeld’s and P.A. Clarkson’s differential Gröbner
basis algorithm [9] programmed by using computer algebra systems can be used for at-
tempts to solve such equations. Here we would like to mention a challenging problem
of interplaying the classical and nonclassical symmetries. The matter is that the deter-
mining equations for nonclassical symmetries inherit the Lie classical symmetries of the
original equations [10]. One can use these classical symmetries for systematical solving of
nonclassical determining equations. We demonstrate this method by taking as an exam-
ple the nonlinear wave equation utt = (u ux)x and performing symbolic calculations with
“Mathematica” [11].
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2 A “Mathematica” program SYMMAN

An excellent review of programs (more than 16 in number) of symmetry symbolic calcu-
lations for Reduce, Macsyma, Maple, Mathematica, Axiom, muMath and other computer
algebras is given in [12]. This paper deals with a “Mathematica” program SYMMAN that
was designed under the author’s supervision at Moscow Institute of Electronics and Math-
ematics [13]. The program contains five packages that can work separately. The package
Jets.m is designated for obtaining determining equations for classical and nonclassical
symmetries. Moreover, its exported functions provide a wide spectrum of symbolic sym-
metry calculations. The main task of the package Involsys.m is the implementation of
generalized Reid’s algorithm [8] for reducing (overdetermined) systems of PDEs to invo-
lutive forms. Using the package Res.m one can partially or completely solve the systems
of determining equations. The package Invarsys.m does the graphical representation of
the invariant solutions of PDEs. The package Moveline.m is a subsidiary package for
rotating graphs of functions. All five packages can be loaded with the help of the master-
package Master.m. The program was tested by reobtaining the known symmetry results
given in [14].

3 Conditional symmetries of a nonlinear wave
equation invariant or partially invariant
under the classical Lie symmetries

The nonlinear wave equation

utt − (u ux)x = 0 (1)

admits the four-dimensional Lie algebra g of its classical infinitesimal symmetries with the
generators

X1 = ∂t, X2 = ∂x, X3 = t ∂t + x ∂x, X4 = t ∂t − 2 u ∂u. (2)

We will consider the infinitesimal conditional symmetries of (1) of the form:

v = ∂t + ξ(t, x) ∂x + (f(t, x) u + g(t, x)) ∂u. (3)

SYMMAN resulted, in particular,with the following relations for the functions ξ(t, x),
f(t, x), and g(t, x):

fxx = 0, ξxx = 4 fx, g = −f ξ2 + 2 ξ2 ξx + 2 ξ ξt (4)

implying that

f(t, x) = a(t) x + b(t), ξ(t, x) = 2 a(t) x2 + c(t) x + d(t). (5)

If we look for the infinitesimal conditional symmetries v (3) with the coefficients given
by (4) and (5), then one of the determining equations for the functions a(t), b(t), c(t),
and d(t) is a(t) = 0. After taking this relation into account, we obtain the system of 15
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nonlinear ODEs for the functions b(t), c(t), and d(t). By applying SYMMAN for reducing
it to passive forms, we managed to obtain the following infinitesimal symmetries:

v1 = ∂t + (c1 t + c2) ∂x +
(
2 c2

1 t + 2 c1 c2
)

∂u,
v2 = (c1 − (c2 − 2) t) ∂t + 2 x ∂x + 2 c2 u ∂u,
v3 = 2 t ∂t +

(
2 c1 t2 + x

)
∂x + 2

(
4 c2

1 t2 − u + 2 c1 x
)

∂u,
v4 = t ∂t + c1 t3 ∂x +

(
u + 3 c2

1 t4
)

∂u,
v5 = 7 t ∂t + 3 x ∂x − 8 u ∂u,
v6 = 2 x ∂x + u ∂u.

(6)

Vector field v1 was first obtained in [16], while v6 in [15].
When reducing overdetermined systems of nonlinear ODEs to passive forms, we had to

solve nonlinear algebraic equations. Some expressions for solutions were so cumbersome
that could not yield explicit solutions. Sometimes passive forms were systems of ODEs
that could not be solved explicitly. That is why we obtained only six vector fields of
infinitesimal conditional symmetries. The situation is drastically improved if we restrict
ourselves to special classes of the vector fields of the infinitesimal conditional symmetries
(3). These classes consist of vector fields invariant or partially invariant under the classical
Lie symmetries of equation (1).

Suppose that X is an infinitesimal classical symmetry of equation (1). It was demon-
strated in Theorem 4 and Theorem 6 of [10] that if v = τ ∂t +ξ ∂x +φ∂u is an infinitesimal
conditional symmetry of a differential equation and X is an infinitesimal classical symme-
try of the same equation, then exp(αX)∗(v) is also an infinitesimal conditional symmetry
of the equation. This assertion implies that the classical Lie symmetry group of the equa-
tion generates a symmetry group of the nonclassical determining equations. One can
use this induced group for obtaining particular solutions to the nonclassical determining
equations, precisely, solutions invariant or partially invariant under the induced group.

The induced vector fields of infinitesimal symmetries are the following ones:

X̂1 = ∂t, X̂2 = ∂x, X̂3 = t∂t + x∂x − φ∂φ, X̂4 = t∂t − 2u∂u − 3φ∂φ, (7)

where ξ and φ = f(t, x) u + g(t, x) are the coefficients of vector field (3). In the case of
the Lie algebra g with the basis given by (7), common methods of obtaining conjugacy
classes of subalgebras under the inner automorphisms (see [2]) lead to the following list of
representatives of the conjugacy classes (optimal subalgebras):

One-dimensional subalgebras

g1 = L(X1), g2 = L(X2), g3 = L(X1 −X2),
g4 = L(X1 + X2), g5 = L(X3), g6 = L(X4),
g7 = L(X4 + X2), g8 = L(X4 −X3), g9 = L(X4 −X3 + X1),
g10 = L(X4 −X3 −X1), g11 = L(ζX3 + X4).

(8)

Two-dimensional subalgebras

g12 = L(X4 + ζX3, X1), g13 = L(X4 + ζX3, X2), g14 = L(X4, X3),
g15 = L(X4 −X3 + X1, X2), g16 = L(X4 −X3, X2), g17 = L(X2, X1)
g18 = L(X4 + X2, X1), g19 = L(X4, X1), g20 = L(X4, X2),
g21 = L(X3, X1 + X2), g22 = L(X3, X1 −X2), g23 = L(X3, X1),
g24 = L(X3, X2), g25 = L(X4 −X3, X1),

(9)
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where ζ is a real parameter, ζ 6= 0,−1, L is a symbol of a linear hull.
The following Table 1 contains the infinitesimal conditional symmetries invariant under

one-dimensional subalgebras (8).

Table 1. Invariant conditional symmetries

g2 v2,1 = ∂t + (c1 t + c2) ∂x +
(
2 c2

1 t + 2 c1 c2
)

∂u,
v2,2 = t ∂t + c1 t3 ∂x +

(
3 c2

1 t4 + u
)

∂u,
v2,3 = ∂t + b(t) u ∂u with b(t) satisfying b′′(t) + b(t) b′(t)− b(t)3 = 0,

g6 v6,1 = t3 ∂t + t2 (c1 − x) ∂x + (−6 c2
1 + 2 t2 u + 12c1 x− 6 x2) ∂u,

v6,2 = t3 ∂t + t2 (c1 + x) ∂x + (c2
1 − t2 u + 2 c1 x + x2) ∂u,

g7 v7,1 = t ∂t + u ∂u,
g11 v11,1 = 8 t ∂t + 9 x ∂x + 2 u ∂u,

v11,2 = 2 t ∂t + 3 x ∂x + 2 u ∂u,
v11,3 = 2 t ∂t +

(
2 c1 t2 + x

)
∂x +

(
8 c2

1 t2 − 2 u + 4 c1 x
)

∂u,
v11,4 = 3 t ∂t + x ∂x − 4 u ∂u,
v11,5 = t3 ∂t +

(
c1 t7 − x t2

)
∂x

+
(
4 c2

1 t10 + 2 t2 u + 2 c1 t5 x− 6 x2
)

∂u,
v11,6 = t ∂t + 5 x ∂x + 8 u ∂u.

Besides invariant solutions, the classical Lie symmetry algebra g of a system S of partial
differential equations provides the method for obtaining partially invariant solutions [2].
The latter are defined relative to at least two-dimensional subalgebras of g. Partially
invariant solutions are determined with the aid of partially invariant surface conditions
as follows. Suppose that the system S is written for the vector-valued function u =(
u1(x), . . . , um(x)

)
of independent variables x = (x1, . . . , xn). Suppose also that the Lie

algebra g of the infinitesimal symmetries for the system S is a linear hull of its basis vector
fields

Xj = ξji(x, u) ∂xi + κα
j (x, u) ∂uα , j = 1, . . . q. (10)

The functions Qα(x, u, ux) = κα
j (x, u)−uα

xi
ξji(x, u) defined on the space J1(Rn×Rm) are

called characteristic functions of the basis vector fields (10). The equations of the system

rank||Qα
j || ≤ δ, (11)

are called partially invariant surface conditions. In (11) δ is the deficiency index. The
values of the index δ are restricted by the inequalities 1 ≤ δ ≤ min(q, m− 1).

There are two unknown functions ξ and φ of the independent variables t, x, and u, so
there is only one possible value for the deficiency index δ, precisely, δ = 1. Substituting
the functions ξ and φ into (11) yields the new relation that must be augmented to system
(4). The analysis of this new overdetermined system allowed us to obtain the folowing
vector fields partially invariant under two-dimensional subalgebras.

Table 2. Partially invariant conditional symmetries

g21 v21,1 = 7 t ∂t + 5 x ∂x − 4 u ∂u,
v21,2 = t3 ∂t − x t2 ∂x +

(
2 u t2 − 6 x2

)
∂u,

v21,3 = t3 ∂t + x t2 ∂x +
(
−u t2 + x2

)
∂u,

g24 v24,1 = 4 t3 ∂t + 2 (5−
√

13) t2 x ∂x + 4 t2 u (3−
√

13) ∂u,

v24,2 = 4 t3 ∂t + 2(5 +
√

13) t2 x ∂x + 4 t2 u (3 +
√

13) ∂u.
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