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Abstract
An efficient method for constructing of particular solutions of some nonlinear partial
differential equations is introduced. The method can be applied to nonintegrable
equations as well as to integrable ones. Examples include multisoliton and periodic
solutions of the famous integrable evolution equation (KdV) and the new solutions,
describing interaction of solitary waves of nonintegrable equation.

1 Introduction

In recent years there was interest in constructing solutions of nonlinear partial differential
equations in the form of infinite series. The direct linearization of certain famous inte-
grable nonlinear equations was carried out in [1]. Solutions of the KdV equation were
connected with solutions of the Hopf equation by using formal series in [2] (the Hopf
equation can be linearized with the help of the ”hodograph” transformation). Convergent
exponential series were used in papers [3]–[8] for constructing solutions of the Boltzmann
equations. The possibility to use such series for some other equations was discussed in [4].
Fourier series were applied for constructing solutions of perturbed KdV equation in [9].
Exponential series were used also for investigating nonlinear elliptic equations [10]. Some
other references can be found in the cited papers.

In this paper we consider the class of equations and systems containing arbitrary linear
differential operators with constant coefficients and arbitrary nonlinear analytic functions
of dependent variables and their derivatives up to some finite order in assumption that
these equations possess a constant solution. In contrast to the cited papers [1] and [2],
we do not look for transformation connecting solutions of the given equation with an
arbitrary solution of some other equation. Our method is based on formal linearization
of a nonlinear partial differential equation to the system of linear ordinary differential
equations, describing some finite-dimensional subspace of the space of solutions of the lin-
earized equation. It allows us to develop a very simple technique of finding the linearizing
transformation and to apply the method to nonintegrable equations as well as to integrable
ones. Solutions have the form of exponential or Fourier series.
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Let us note that the similar approach with the different technique (solutions are con-
structed in the form of exponential series in x with coefficients, depending on t and deter-
mined by the system of ordinary differential equations, which can be solved recursively)
was independently developed in [11] for the wide class of evolution equations and in this
case the convergence of constructed exponential series was investigated [11].

2 The method of formal linearization

Let us consider equations of the following form

L̂(Dt, Dx)u(t, x) = N [u], (1)

where

L̂(Dt, Dx) ≡
K∑

k=0

M∑
m=0

lkmDk
t Dm

x (2)

is a linear differential operator with constant coefficients and

N [u] ≡ N(u, u1, u2, ..., up), up =
∂p1+p2u

∂tp1∂xp2
, p = (p1, p2),

is an arbitrary analytic function of u and of its derivatives up to some finite order p. We
suppose that Eq.(1) possesses the constant solution. Without loss of generality we assume
that

N [0] = 0,
∂N [0]

∂u
= 0,

∂N [0]
∂u1

= 0, ...,
∂N [0]
∂up

= 0.

We consider Eq.(1) in connection with the equation linearized near a zero solution:

L̂(Dt, Dx)w(t, x) = 0. (3)

Let L be the vector space of solutions of Eq.(3) and PN ⊂ L be the N -dimensional
subspace with the basis

wi = Wi exp(αiξi), ξi = x− sit, i = 1, N.

Here si and Wi are some constants. The constants αi = αi(si) are assumed to satisfy the
dispersion relation

L̂(−αisi, αi) = 0.

The subspace PN =
{ N∑

i=1
Ciwi|Ci = const

}
is specified by the system of N linear

ordinary differential equations

dwi

dξi
= αiwi, i = 1, N.

We use the following notation:

wδ
(N) ≡ wδ1

1 wδ2
2 ...wδN

N , δ = (δ1, δ2, ..., δN ), |δ| =
N∑

i=1

δi.
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It is obvious that the monomials wδ
(N) are the eigenfunctions of the operator (2):

L̂(Dt, Dx)wδ
(N) = λδw

δ
(N)

with the eigenvalues

λδ =
K∑

k=0

M∑
m=0

lkm

(
−

N∑
i=1

αisiδi

)k( N∑
i=1

αiδi

)m
.

Theorem 1. If λδ 6= 0 for every multiindex δ with positive integer components δi ∈ Z+,
i = 1, N , satisfying the condition |δ| 6= 0, 1, then Eq.(1) possesses solutions connected with
solutions from PN by the formal transformation

u =
∞∑

n=1

εnφn(w1, w2, ..., wN ), (4)

where

φn =
∑
|δ|=n

(An)δw
δ
(N) (5)

are homogeneous polynomials of degree n in the variables wi. This transformation is unique
(for the first term φ1 ∈ PN fixed).

Remark 1. Here ε is the grading parameter, finally we can put ε = 1.

The proof of the theorem is constructive. Substituting (4) into (1), expanding N [u] into
the power series in ε, and then collecting equal powers of ε, we obtain the determining
equations for the functions φn and show that if λδ 6= 0, then these equations possess
the solution (5) with the coefficients (An)δ uniquely determined through the coefficients
(A1)δ by the recursion relation. Thus, the theorem gives us the method for constructing
particular solutions of Eq.(1).

This result can be generalized for the systems of the form

n∑
j=1

L̂i
j(Dt, Dx)uj(t, x) = N i[u], i = 1, n, (6)

where

L̂i
j(Dt, Dx) ≡

K∑
k=0

M∑
m=0

(lij)kmDk
t Dm

x (7)

are linear differential operators with constant coefficients and N i[u] are arbitrary analytic
functions of uj , j = 1, n, and their derivatives up to some finite order p. We suppose
again that the system (6) possesses a constant solution. There is no loss of generality in
assuming that

N i[0] = 0,
∂N i[0]
∂uj

= 0,
∂N i[0]

∂uj
1

= 0, ...,
∂N i[0]

∂uj
p

= 0; i, j = 1, n.
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The system linearized near a zero solution and corresponding to (6) has the form

n∑
j=1

L̂i
j(Dt, Dx)wj(t, x) = 0. (8)

Now the subspace PN of solutions of (8) is generated by the vector functions

wl = (W 1
l ,W 2

l , ...,Wn
l ) exp(αlξl), ξl = x− slt, l = 1, N

with some constants sl and W j
l . Here the constants αl = αl(sl) are assumed to satisfy the

dispersion relation

det [L̂i
j(−αlsl, αl)] = 0

and the constants W j
l = W j

l (sl) are assumed to satisfy the system of linear algebraic
equations

n∑
j=1

L̂i
j(−αlsl, αl)W

j
l = 0, i = 1, n.

The subspace PN is specified by the system of N linear ordinary differential equations

dw1
l

dξl
= αlw

1
l , l = 1, N

and the set of (n− 1)N algebraic relations wj
l = W j

l w1
l , j = 2, n, l = 1, N.

All constructions can be repeated. Let us use the notation (λi
j)δ for the eigenvalues of

the monomials

(w1
(N))

δ ≡ (w1
1)

δ1(w1
2)

δ2 ...(w1
N )δN

under action of the operators (7):

L̂i
j(Dt, Dx)(w1

(N))
δ = (λi

j)δ(w1
(N))

δ.

Here

(λi
j)δ =

K∑
k=0

M∑
m=0

(lij)km

(
−

N∑
l=1

αlslδl

)k( N∑
l=1

αlδl

)m
.

Theorem 2. If det [(λi
j)δ] 6= 0 for every multiindex δ with positive integer components

δl ∈ Z+, l = 1, N , satisfying the condition |δ| 6= 0, 1, then the system (6) possesses
solutions connected with the solutions from PN by the formal transformation

uj =
∞∑

k=1

εkφj
k(w

1
1, w

1
2, ..., w

1
N ), j = 1, n,

where

φj
k =

∑
|δ|=k

(Aj
k)δ(w1

(N))
δ
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are homogeneous polynomials of degree k in the variables w1
l . This transformation is

unique (for the first term φ1 ∈ PN fixed).

Remark 2. Although the conditions λδ 6= 0 and det[(λi
j)δ] 6= 0 seem to be very restrictive,

they are usually fulfilled in some open domain of the parameter space, as it is shown by
the examples.

3 Examples

3.1 The KdV equation (multisoliton solutions)

Let us consider the KdV equation

L̂(Dt, Dx)u(t, x) = −6uux, L̂(Dt, Dx) = Dt + D3
x. (9)

For simplicity we look for a solution of (9) in the form

u =
∞∑

n=1

εnφn(w1, w2), (10)

where

wi = Wi exp[
√

si(x− sit)], i = 1, 2

is the basis of the subspace P 2 ⊂ L (let si and Wi be some real constants).
Substituting (10) into (9) and collecting equal powers of ε we obtain the determining

equations for the functions φn as follows

L̂φ1 = 0, L̂φn = −6
n−1∑
k=1

φkDxφn−k, n ≥ 2.

These equations possess the solution φn =
∑
|δ|=n

(An)δw
δ
(2), δ = (δ1, δ2), which can

be rewritten in this case in the following form

φn =
n∑

k=0

An
kwk

1wn−k
2 (φ1 ∈ P 2).

The coefficients An
k can be found through A1

0 and A1
1 (we can assume that either A1

0 =
A1

1 = 1 or A1
0 = 0, A1

1 = 1) by the recursion relation

An
k = − 6

λ(k,n−k)

n−1∑
l=1

n−l∑
m=0

[
√

s1m +
√

s2(n− l −m)]Al
k−mAn−l

m , (11)

n ≥ 2, 0 ≤ k ≤ n; An
k = 0 if k < 0 or k > n,

λ(k,n−k) = s1
√

s1k(k2 − 1) + s2
√

s2(n− k)[(n− k)2 − 1] +
3
√

s1s2k(n− k)[
√

s1k +
√

s2(n− k)].

If s1 > 0 and s2 > 0, then λ(k,n−k) 6= 0 for every pair (k, n − k) with
k, n ∈ Z+, n ≥ 2, 0 ≤ k ≤ n.
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The constructed solution is an expansion of a 2-soliton solution, which can be written
as

u = 2D2
x ln

1 + w1 + w2 +

(√
s1 −

√
s2√

s1 +
√

s2

)2

w1w2

 . (12)

Indeed, expanding (12) into power series in w1 and w2 and substituting this expansion
into (9), we obtain the recursion relation (11) for the coefficients.

If A1
0 = 0, then φ1 ∈ P 1 and we get from (10) the expansion for a 1-soliton solution.

For obtaining the N-soliton solution, we must take φ1 ∈ PN .

3.2 Nonintegrable equation (solutions, describing interaction

of solitary waves)

Let us consider the equation

L̂(Dt, Dx)u(t, x) = u3, L̂(Dt, Dx) = D2
t −D2

x + 1. (13)

It is known [12] that this equation is nonintegrable and its solitary wave solutions are not
solitons. We can construct analytic solutions describing interaction of these waves with
the help of our method.

Constant solutions of (13) are u = 0 and u = ±1.
The equation linearized near a zero solution has the form L̂w = 0 and the space of its

solutions contains the subspace P 2 with the basis

wi = Wi exp
x− sit√
1− s2

i

, i = 1, 2.

We look for solutions of (13) in the form (10) and obtain the determining equations as
follows

L̂φ1 = 0, L̂φ2 = 0, L̂φn =
n−1∑
k=2

φn−k

k−1∑
l=1

φlφk−l, n ≥ 3.

These equations possess the solution

φ2p+1 =
2p+1∑
n=0

Ap
nwn

1 w2p+1−n
2 , φ2p+2 = 0, p ≥ 0,

where

Ap
n =

1
λ(n,2p+1−n)

p−1∑
m=0

p−m−1∑
r=o

2m+1∑
k=0

2r+1∑
l=o

Am
k Ar

l A
p−m−r−1
n−k−l ,

p ≥ 1, 0 ≤ n ≤ 2p + 1; Ap
n = 0 if n < 0 or n > 2p + 1;

λ(n,2p+1−n) = 1− n2 − (2p + 1− n)2 − 2
1− s1s2√

(1− s2
1)(1− s2

2)
n(2p + 1− n).

Here either A0
0 = A0

1 = 1 (in this case Ap
n = Ap

2p+1−n) or A0
0 = 0, A0

1 = 1.
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If |s1| ≤ 1 and |s2| ≤ 1, then λ(n,2p+1−n) 6= 0 for every pair (n, 2p + 1 − n) with
n, p ∈ Z+, p ≥ 1, 0 ≤ n ≤ 2p + 1.

If A0
0 = 0, then we obtain

u =
∞∑

p=0

(−1
8
)p(εw1)2p+1 =

εw1

1 + 1
8(εw1)2

=
2
√

2w

1 + w2
,

where w = εw1/2
√

2. In (t, x)-variables we have

u = ±
√

2 sech
x− st + x0√

1− s2
.

These are solitary wave solutions. Solitary waves of this kind can move with velocities
satisfying the condition |s| ≤ 1.

Another possibility to construct solutions is to linearize (13) near the solution u = 1.
The change of variables u = 1 + v leads to the equation

M̂(Dt, Dx)v(t, x) = 3v2 + v3, M̂(Dt, Dx) = D2
t −D2

x − 2,

which should be linearized near a zero solution. In this case, the subspace P 2 is generated
by the functions

wi = Wi exp

[√
2

s2
i − 1

(x− sit)

]
, i = 1, 2.

Our procedure gives the solution

v =
∞∑

n=1

n∑
k=0

An
kwk

1wn−k
2 ,

An
k =

1
λ̃(k,n−k)

3
n−1∑
l=1

l∑
m=o

Al
mAn−l

k−m +
n−1∑
l=2

l−1∑
m=1

n−l∑
p=0

m∑
q=0

An−l
p Am

q Al−m
k−p−q

 ,

n ≥ 2, 0 ≤ k ≤ n; An
k = 0 if k < 0 or k > n;

λ̃(k,n−k) = 2

k2 + (n− k)2 + 2
s1s2 − 1√

(s2
1 − 1)(s2

2 − 1)
k(n− k)− 1

 .

Here either A1
0 = A1

1 = 1 (in this case An
k = An

n−k) or A1
0 = 0, A1

1 = 1.
If |s1| > 1 and |s2| > 1, then λ(k,n−k) 6= 0 for every pair (k, n − k) with n, k ∈ Z+,

n ≥ 2, 0 ≤ k ≤ n.
If A1

0 = 0, then we get

v =
∞∑

n=1

(1
2

)n−1
(εw1)n =

εw1

1− 1
2εw1

=
2w

1− w
,

where w = εw1/2. Thus, in (t, x)-variables we have

u = 1 + v = ± tanh
x− st + x0√

2(s2 − 1)
.
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These are the kinks which can move with velocities satisfying the condition |s| > 1.
Linearization near the solution u = −1 does not give new solutions.

4 Concluding remarks

It should be noted that the method of formal linearization introduced in this paper can
be developed by means of linearization of a nonlinear partial differential equation near its
nonconstant solutions. For example, the KdV equation (9) possesses the exact singular
solution

u = 2s
w

(1 + w)2
, w = W exp[

√
s(x− st)], s < 0.

Linearizing (9) near this solution, we obtain the expansion for the well-known cnoidal wave
solution. The expansion contains not only positive but also negative powers of w. Thus,
in this case we deal with Fourier series.
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