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Abstract

Differential forms are used for construction of nonlocal symmetries of partial differen-
tial equations with conservation laws. Every conservation law allows to introduce a
nonlocal variable corresponding to a conserved quantity. A prolongation technique is
suggested for action of symmetry operators on these nonlocal variables. It is shown
how to introduce these variables for the symmetry group to remain the same. A
new hidden symmetry and corresponding group-invariant solution are found for gas
dynamic equations.

1 Integrable forms and nonlocal symmetries

Let us consider a system of differential equations

F k(x, t,
→
ux,

→
u t ..) = 0, k = 1, 2..m (1)

with independent variables x, t and differential variables ui (i = 1, 2..n). We call a differen-
tial form ω =α(x, t,

→
ux,

→
u t ..)dx + β(x, t,

→
ux,

→
u t ..)dt integrable (on (1)) if Dt(α) = Dx(β)

on (1). (It is suggested that ω 6≡ 0 on (1).) Here Dt = ∂
∂t + ui

t
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∂ui + ui
tt

∂
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tx

∂
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· · · , Dx = ∂
∂x +ui
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∂

∂ui +ui
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∂
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+ui
xx

∂
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+ · · · are operators of full derivatives. The inte-

grability of the form ω guarantees the existence of the function Ω(x, t) which meets the con-
dition dΩ = ω. Thus we can extend the system (1) by means of equations Ωx = α, Ωt = β,
with the extended system being consistent. Forms which are integrable on (1) form an
infinite-dimensional linear space.

For example, the system of gas dynamic equations in Euler coordinates

ρt + uρx + uxρ = 0, ut + uux +
1
ρ
px = 0, pt + γpux + upx = 0 (2)

has the following basis of integrable forms: ω1 = ρudx−(p+ρu2)dt, ω2 =
(

p
γ − 1 + ρu2

2

)
×

dx −
(

γpu
γ − 1 + ρu3

2

)
dt, ωE = E

(
ρ

p1/γ

)
p1/γdx − uE

(
ρ

p1/γ

)
p1/γdt, ω3 = ρ(x − tu)dx +

(ρu(tu− x) + tp)dt, ωF = Fx(x, t)dx + Ft(x, t)dt, with arbitrary functions E(s), F (x, t).
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For γ = 3, there are two additional forms ωγ
1 = (tp+ tρu2− ρux)dx+(x(p+ ρu2)− tρu3−

γtpu)dt, ωγ
2 = (t2p + ρu2t2 − 2ρuxt + ρx2)dx + (2txp + 2txρu2 − ρux2 − t2ρu3 − γpt2u)dt.

A differential form ω1 corresponds to the law of momentum conservation and allows to
rewrite the system (2) in the form(

1
ρ

)
t

− p

(
1
ρ

)
r

= uur, ut − pur = −upr, εt − pεr = −puur(ε = p/(γ − 1)ρ)

with additional equations xr = 1
ρu, xt = p

ρu + u. (see [1]). The symmetry operator of (2)

t ∂
∂x + ∂

∂u cannot be extended on r in the form t ∂
∂x + ∂

∂u + R(x, t, ρ, u, p, r) ∂
∂r so that it

would be a symmetry operator for this system. Later we will see the reason of this fact.
Let X = ξ(x, t, u) ∂

∂x + τ(x, t, u) ∂
∂t + ηi(x, t, u) ∂

∂ui be an infinitesimal operator of

some one-parameter transformation group acting on Rn+2(x, t, u). Similarly to [2], its
action may be extended on dx and dt by formulae X(dx) = Dx(ξ)dx + Dt(ξ)dt = D(ξ) =
D(X(x)), X(dt) = Dx(τ)dx+Dt(τ)dt = D(τ) = D(X(t)), where D = dxDx +dtDt is the
operator of full exterior differentiation (see [3]). The operator extended in that way can
act on differential forms. Besides, it commutes with D. This property is analogous to the
fact that a Lie derivative commutes with an exterior derivative. Obviously ω is integrable
if and only if D(ω) = 0 on (1). If X is a symmetry operator of (1) and ω is integrable,
then D(X(ω)) = X(D(ω)) = 0 on (1) and X(ω) is integrable too. It is easy to show that
if (1) may be written in the form

D(Ψi) = Φi = 1 . . .m, (3)

where Ψi = Ai(x, t, u..)dx+Bi(x, t, u..)dt, Ψi = Ei(x, t, u..)dt∧dx, then X is a symmetry
operator of (1) if and only if D(X(Ψi)) = X(Φi) on (1).

Action of the symmetry group of (2) on integrable forms may be represented in the
form of the table:

ω1 ω2 ω3 ωE ωF ωγ
1 ωγ

2
∂
∂x 0 0 ωs 0 ωFx −ω1 2ω3
∂
∂t 0 0 −ω1 0 ωFt 2ω2 2ωγ

1

t ∂
∂x + ∂

∂u ωs ω1 0 0 ωtFx −ω3 0
ρ ∂

∂ρ + p ∂
∂p ω1 ω2 ω3 ωE1 0 ωγ

1 ωγ
2

x ∂
∂x + t ∂

∂t ω1 ω2 2ω3 ωE ωxFx+tFt 2ωγ
1 3ωγ

2

x ∂
∂x − 2ρ ∂

∂ρ + u ∂
∂u 0 ω2 0 ωE2 ωxFx ωγ

1 ωγ
2

xt ∂
∂x + t2 ∂

∂t − tρ ∂
∂ρ + (x− tu) ∂

∂u − 3tp ∂
∂p ω3 −ωγ

1 0 0 ωxtFx+t2Ft
−ωγ

2 0

Here ωE1 and ωE2 are forms of the ωE type with E1(s) = ((γ − 1)s d
dsE(s) + E(s))/γ

E2(s) = E(s) − 2s d
dsE(s). The form ωFx equals d(Fx) and so on. The last two columns

and the last row arise where γ = 3. Thus, a linear space of integrable forms is decomposed
into a direct sum of two invariant subspaces V = VF ⊕ V of forms ωF = dF (x, t) and
ω = c1ω1 +c2ω2 +c3ω3 +ωE +{k1ωγ

1 +k2ωγ
2}, respectively. V contains a finite-dimensional

invariant space of forms ω = c1ω1 + c2ω2 + c3ω3 + c4ωs + {k1ωγ
1 + k2ωγ

2}. It is convenient
to consider integrable forms up to forms which are equal to zero on solutions of (1). Since
the space of such forms is invariant under action of a symmetry operator, this action is
correctly defined on the factor space W of integrable forms by forms equal to zero on (1).
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Theorem 1 Let Winv be a finite-dimensional invariant subspace of W with the basis
ω̃1, ω̃2..ω̃k, X be a symmetry operator of (1), X(ωi) = cj

iωj + ωi0, where ωi = αidx + βidt
is the original of ω̃i under factorization, ωi0 = 0 on (1). Then the system (1) extended by

qix = αi, qit = βi i = 1...k (4)

has the symmetry operator Y = X + Qi
∂

∂qi
with Qi = cj

i qi.

Proof. Admissibility of Y is equivalent to Dx(qi)− qixDx(ξ)− qitDx(τ) = Y (αi) Dt(qi)−
qixDt(ξ)− qitDt(τ) = Y (βi) on (1). That may be rewritten in the form cj

iαj − αiDx(ξ)−
βiDx(τ) = Y (αi) cj

iβj − αiDt(ξ) − βiDt(τ) = Y (βi). Multiplying the first equality by dx

and the second by dt and summing them together, we arrive at Y (ωi) = cj
iωj which must

be fulfilled on (1), i.e., Y (ωi) = cj
iωj + ωi0.

This proof is valid in the case when Y (ωi) = D(fi) + ωi0, where fi is a function of
x, t, u, q, ux.., and the form ωi0 is equal to zero on the extended system. In this case,
Qi = fi.

Now it is clear why the operator X = t ∂
∂x + ∂

∂u cannot be retained as a symmetry
operator of (2) extended by r : dr = ω1. The form ω1 is not eigen for X : X(ω1) = ωs.
The space spanned by ω1, ωs is invariant under action of the symmetry algebra of (2),
when γ 6= 3. Thus, all symmetry operators may be extended on r, m (here D(r) = ω1,

D(m) = ρdx− ρudt). For example, t ∂
∂x + ∂

∂u −→ t ∂
∂x + ∂

∂u + m ∂
∂r , since X(ωs) = 0.

2 Examples

Extensions of (1) considered above turned out to be useful for construction of quasilocal
symmetries proposed in [4]. The authors of [4] consider the sequence of equations

wt = H(wxx), (5)

vt = h(vx)vxx, (6)

ut = (h(u)ux)x (7)

(where H(s) =
∫

h(s)ds), connected with Backlund transforms

wx = v, wt = H(vx) vx = u, vt = h(u)ux. (8)

Then quasilocal symmetry of (6) associated with local symmetry of (5) may be regarded
as symmetry of (5) extended on the new variable v. To prolong the action of operator is
to extend it on wx and replace it by v. But quasilocal symmetry of (5) associated with
local symmetry of (6) cannot be obtain in a similar way. In [4], the so-called ”transition
formulas” are used for this purpose.

Here we suggest to use the above procedure of prolongation of the symmetry operator
of (6) on the new variable w defined by dw = vdx + H(vx)dt. In [4] it was shown that
(6) has a symmetry operator of rotation X = −v∂x + x∂v when h(ξ) = 1/(1 + ξ2). We

have X(D(w)) = X(vdx + arctan(vx)dt) = D
(
x2 − v2

2 + t
)
. So X = −v∂x + x∂v +
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x2 − v2

2 + t
)
∂w is the symmetry operator of (6) extended with the first pair of equations

(8). Substituting v with wx, we get the Lie-Backlund symmetry operator of (5).
When H(ξ) = −3ξ−1/3, equation (7) has the symmetry operator X = x2∂x−3xu∂u (see

[4]). Since X(D(v)) = X(udx+h(u)uxdt) = −D(xv)+vdx−3v
−1/3
x dt+x(v−4/3

x vxx−vt)dt,
we have a quasilocal symmetry operator of (6) X = x2∂x + (w − xv)∂v, where dw =
vdx− 3v

−1/3
x dt. It can be prolonged on w as follows X = x2∂x +(w−xv)∂v +xw∂w since,

X(dw) = D(xw)+ v
−4/3
x (wx− v)dt. This operator can be treated as a symmetry operator

of (6) extended with the first pair of equations (8).
Gas dynamic equations in mass Lagrange coordinates(

1
ρ

)
t

− um = 0, ut + pm = 0, pt + γρpum = 0 (9)

(where the Euler coordinate x is connected with m by dx = dm
ρ +udt) admit a symmetry

operator X = t∂u −m∂p + ρm
p ∂p when γ = −1 (Chaplygin gas) (see [4]). Even extended

by mx = ρ, mt = −ρu, system (2) does not allow this symmetry. The cause of this fact is
that X(dx) = X

(
dm
ρ +udt

)
= tdt−m

ρpdm = tdt−m
ρp(ρdx−ρudt) =

(
t + mu

p

)
dt−m

p dx is

not a differential of any function of t, x, m, ρ, u, p. Introducing Q : D(Q) =
(
t + mu

p

)
dt−

m
p dx, we retain this symmetry of (2) extended by equations mx = ρ, mt = −ρu, Qx =

−m
p , Qt = t+mu

p since X(D(Q)) = 0. The prolonged operator is t∂u−m∂p+ ρm
p ∂p+Q∂x.

3 New hidden symmetry of gas dynamic equations

For the nonlocal variables m and r of Eqs.(2), we have mt = −rx. It allows to introduce
the variable w : wx = −m, wt = r. Then ρ = mx = −wxx, u = rx/mx = −wtx/wxx,
p = −rt −mx(rx/mx)2 = −wtt + w2

tx/wxx. So all dependent variables of (2) are expressed
in terms of derivatives of w. Equations for ρ, u are fulfilled for any W (x, t) and the
equation for p gives

wtttw
3
xx − 3wttxwxtw

2
xx − wtxx(γwttw

2
xx − (γ + 3)w2

xtwxx)+

wxxx(−(γ + 1)w3
xt + γwttwxtwxx) = 0. (10)

The symmetry algebra of this equation is generated by the following operators

X1 = ∂t, X2 = ∂x, X3 = t∂t, X4 = t∂x, X5 = x∂x, X6 = w∂w,

Y1 = w∂x, Y2 = x∂w, Y3 = t∂w, Y4 = ∂w.

These operators can be prolonged on derivatives of w. After substitution

wx = −m, wt = r, wxx = −ρ, wxt = ρu, wtt = −p− ρu2,

this algebra can be regarded as a symmetry algebra of (2) extended on some of the variables
r, m,w defined by

mx = ρ, mt = −ρu, rx = ρu, rt = −p− ρu2, wx = −m, wt = r.
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We have X1 → ∂t, X2 → ∂x, X3 → t∂t−u∂u− 2p∂p, X4 → t∂x +∂u, X5 → x∂x− 2ρ∂ρ +
u∂u, X6 → ρ∂ρ + p∂p, Y1 → w∂x + (r −mu)∂u + 3mρ∂ρ + mp∂p + mr∂r + m2∂m, Y2 →
x∂w − ∂m, Y3 → t∂w + ∂r, Y4 → ∂w.

Operators Xi are well-known point symmetry operators of (2). Operators Y2, Y3, Y4 are
trivial. The operator Y1 generates the nontrivial nonlocal symmetry group of (2) which
cannot be found in both Euler and Lagrange mass coordinates. Note that for the gas
dynamic equations in mass Lagrange coordinates, it is not necessary to introduce w to
retain this operator.

The corresponding group-invariant solution of (2) can be written down in the form

p =
β

(2δ)1/2

(
x0 − x + ct− βt2

2

)−1/2

,

ρ =
δ

(2δ)3/2

(
x0 − x + ct− βt2

2

)−3/2

,

u = c− βt,

where β, δ, c, x0 are constant. Since β > 0, this solution exists only for a finite period of
time.

When γ = 3, the symmetry algebra of (10) is extended by X7 = t2∂t + tx∂x + tw∂w,
which gives the well–known operator xt∂x+t2∂t−tρ∂ρ+(x−tu)∂u−3tp∂p. It is interesting
that the case γ = −1 is not classificating for (10), but γ = 0 gives extra operators

Z1 = t2∂x, Z2 = t2∂w, Z3 = t2

2 ∂t + tx∂x + tw∂w.

References

[1] Dar’in N.A., Momentum and energy Lagrange variables for gas dynamic equations, Preprint of IAM,
Russian Academy of Sciences, 1992, N 33.

[2] Ibragimov N.H., Group Transformations in Mathematical Physics, Moscow, Nauka, 1983.

[3] Olver P.J., Applications of Lie Groups to Differential Equations, New York, Springer-Verlag, 1986.

[4] Akhatov N.S, Gazizov R.K., Ibragimov N.H., Nonlocal Symmetries. Heuristic approach, In: Sovre-
mennye problemy matematiki. Noveishie dostizheniya, V.34.


