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Abstract

We study a class of explicitly Poincare-invariant equations of motion (EMs) of two
point bodies with a finite speed of propagation of interactions (combination of re-
tarded and advanced ones) that may be considered as functional-differential equations
or differential equations with deviating argument of a neutral type. Under conditions
having a clear physical interpretation it is proved that there exist ordinary differential
equations with all weakly-relativistic solutions satisfying the initial EMs. The exis-
tence and uniqueness of two-sided solutions of initial EMs on the infinite time interval
are investigated.

1 Introduction

The systems of point particles with a finite speed of propagation of interactions have — in
general case — an infinite number of degrees of freedom. This means that the trajectories
of particles cannot be specified only by their initial positions and velocities. However,
some isolated few-body systems do not obey this rule. The physical and mathematical
aspects of this situation have been discussed in [1]-[12]. The main questions arising here
are related to the existence and uniqueness properties of two-sided solutions of the dif-
ferential equations with deviating arguments. These questions, known from the theory
of delay-differential equations [13],[14], are significantly obscured by a special structure
of the equations of motion in relativistic dynamics, and it is important that the restric-
tions imposed on functional classes of solutions to provide the uniqueness be physically
reasonable.

In this paper some new results in this direction are presented for Poincare-invariant
equations of motion with respect to the two-particle trajectories x4 := x4 (t,) = {t,, x,(tp)},
p=1,2, u=0,1,2,3. In particular, we extend the results of [11], [12] on more general
two-body equations of motion including the advanced-retarded interactions and outline a
new proof of the results [4], [8], [9] for one-dimensional symmetric motions.
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2 The equations of motion

The equations studied have the following form of a functional differential system (FDS)
mPAg = /dsqGPq[Fﬁ;(qu, U]?? Uz?) + pg(qu? U;))? Uga A?;?A?)]’ p,q= 17 2; p 7& Q;(l)

where {Ro,} = {28 — 22}, Ul = datt/ds,, AS = dU /dsy, ds, = \/1— %, , UbUp, = 1;
FlUpy = 0, ffUp, =0 (conditions to preserve the normalization of UJ{J‘)7 the scalar
products are taken and the indexes are raised and lowered with respect to the Minkowski
metric diag(1,—1,—1,—1) ;

Gpg =g 0(tp — tq) + g70(tq — tp)] 0[Ryy Rpgal

0 is the Heaviside function, ¢ is the Dirac function, g and ¢g* are interaction constants,
my > 0 are particle masses.

The functions F}, are constructed from the Poincare-invariant combinations of the
four-dimensional vectors {RS,} = {t& — &, x,(tp) — Xq(tg)}, {US} = {US, U} , and f 4
is constructed from the four-vectors Ry, Uy, Ay = {Ag,Ap} , ( p,g = 1,2). Here the
boldface letters denote three-dimensional (spatial) parts of four-vectors. We assume the
units with the speed of light equal to 1.

We suppose that

(a) for Ry, # 0 the functions F}, and f,/ are homogeneous rational expressions of Rp, of

the order -1 and 0, respectively, and they do not involve any dimensional parameters;

(b) these functions are analytic in Up, Usg in the neighborhood of the point U; = 0,
U2 =0 N

: : : ol a .
(c) f4 is a linear homogeneous function of Af, A% ;

(d) for Uy = 0, Uy = 0 the spatial parts of FJ, agree with the Newtonian limit:

g (2)

2
0
Fpg = (xp —%g)/ ’xp - ’
In special cases FDS (1) reduce , e.g., to the equations of motions proposed by A.
Poincare in his famous paper [15] or to the equations arising in any linear masseless field
theory in the Minkowski space [16]. The other example is given by the equations resulting
from the one-particle action functionals [11],[12]

/dsp{_mp - %/dsququq(U;Uqa)} (3)
where f(z) is supposed to be analytic in the neighborhood of z = 1. For f(z) = z under
appropriate choice of gpq and g, this action yields the equations of motion of a charged
particle in classical electrodynamics [17].

Eqgs. (1) are considered from the infinite past; this agrees with the physical notion
about an isolated particle system. The r.h.s. of FDS (1) is defined on the trajectories
from C?(R,R?) satisfying

%p ()| < 1,p=1,2; x1(t) # x2(t). (4)
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We say that the trajectory {x;(t),x2(t)} is a solution of the system (1) if the equations
(1) and conditions (4) are satisfied for all ¢t € R.

3 Existence and uniqueness of two-sided solutions
Define a domain D(g) C R!? of the variables v,,x, , p = 1,2, by the relation
VvIE V3t k/|x) — x| <e,

where k = (|g|+|g*|)/ min(my, m2). This is a domain where the classical energy of particles
is small as compared with their self-energy.
Let W(¢) be a class of weakly-relativistic trajectories defined by

x, € C*(R,R?) ; {x, (t),%,(t)} € D(¢) for Vt € R; sup{|x, (t)| , t € R} < oc.

Now the question is as follows: when can the solutions of the functional-differential
system (1) be described by solutions of the ordinary differential system (ODS)

Xp (t) = Hp(xy (1), %2 (1), x1(£),%2(t))? (5)

The following two theorems generalize some of the results of the papers [11],[12] using
the methods described in [12].

Theorem 1. Let the conditions (a)—(d) for the r.h.s. of (1) be satisfied. Then there exists
a value € > 0 and the Lipschitz continuous functions H, : D(g) — R3, p = 1,2, such that
any trajectory x, € C2(R,R3), {x, (1),x,(t)} € D(e) for Vt € R satisfying ODS (5) on
R is a solution of FDS (1).

The functions H,, are obtained by the certain iteration proceedure [12] which is con-
vergent in the weakly-relativistic region. The space of solutions of FDS (1) is much wider
than that of (5) and in fact the ODS (5) selects a finite-parametric family of them. One
may impose some restrictions on the solutions of (1) to select those trajectories that are
described by (5). Under these restrictions we expect that the solution of FDS (1) can be
specified uniquely by pointwise “initial” conditions

xp (to) = Vop, X, (to) = Xop;
(6)

[vop| <1, X01 7 X02; p=12.

Theorem 2. Let the conditions (a)-(d) for the r.h.s. of (1) be satisfied. Let g > 0,
g* > 0. Then there exist the values € > 0, ¢ > 0 and Lipschitz continuous functions

H, : D(e) — R?, p=1,2, such that for any {vop,Xop} € D(£’)
(i) there is a unique solution of (1) satisfying (6) in the class W (e);
(ii) any solution of (1) from W (') satisfies the ordinary differential system (5).

Thus we see that under clear physical restrictions the ODS (5) represents all the weakly
relativisic solutions of FDS (1).

From this theorem it follows that the Poincare-invariance properties of the system (7)
are transferred to the system (5). This leads to the well-known Currie-Hill differential
conditions of Poincare invariance [18], [19] for the functions H,,.
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4 One-dimensional symmetric two-body problem

Now we shall use the results obtained to study the one-dimensional symmetric motion of
two charged particles of the same sign in ordinary classical electrodynamics with the re-
tarded interaction [2],[4],[9] and the analogous delayed-advanced model problem of Fokker-
Wheeler-Feynman electrodynamics [7],[8],[10] .

Both cases, first considered by R.D.Driver, are represented by the following system

& (1) _ k 1-@(t-r) kK 14+ (t+q)
(1- 22 )32 2O 1+a(t-—r) GEH)1-z(t+q)

(7)

r(t) =xt)+z(t—r), q(t)==xz(t)+z(t+q).

where
(c) k>0, k* =0 in case of purely retarded interaction and
(d) k = k* > 0 in case of retarded-advanced interation.

We say that z(t) is a solution of (7) if z € C*(R,R,)
@ (t) <1,; x(t)>0 (8)

(that corresponds to (4)) and x(t) satisfies (7) Vt € R.
In the one-dimensional case the conditions (6) at the moment ¢y have the form

x (to) = vo, x(ty) = o;
9)

lvo] < 1, zo > 0.

In this case D(g) = {(v,2) € R? : & > 0, v* + (k + k*)/(2z) < ¢}

The interesting feature of the equations (7) is that the restrictions on the functional
class of solutions that select a unique solution under the conditions (9) can be reduced
to a minimum according to (8). In fact any solution of (7) satisfying (9) appears to be a
trajectory from W (e). Here the following property plays the decisive role.

Lemma (Driver|[2],[7], Hoag & Driver [10], Zhdanov [4],[8], [9]). Let z(t) satisfies (7),(8),(9)
where v3 + (k + k*)/zo < e. Then i (t) + (k+ k*)/(2z(t)) < eN(e), and Na(e) < 4 z
(t)z2(t)/(k + k*) < N3(e), where Nij(e) = O(1) fore — 0, i=1,2,3.

The statement of this lemma relies completely on the estimates of [2], [4], [9] in case
of (c¢) and on the estimates of [7], [10] in the case (d).

REMARK. Some intensification of this result yields N;(¢) — 1 for € — 0.
Because the equation (7) is a special case of (1), we derive the existence of a one-
dimensional version of (5):

i (t) = H(& (), z(t)). (10)

Now, in view of the Lemma, in order to investigate the two-sided solutions of (7)—(9),
one may either use Theorems 1 and 2 directly or use the equation (10). In the latter case,
first, one should use the results of [7], [4], [9] to state the existence and uniqueness of
solutions of the problem (7-9) for the data with vy = 0 (for sufficiently small ¢).

The method how to extend these results on vy > 0 has been outlined in [4], [8], [9] by
using some monotonicity properties of the solutions. Here, to extend the domain of the
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initial data on values vy > 0, we use the equation (10) in the following way. Suppose (from
the contrary) the existence of two solutions z(t) and 2/(¢) with the same initial data for
sufficiently small e (without restricting the sign of vp). From the Lemma and on account
of the results of [2],[7], [10], [4],[8], [9], it follows that the solutions intersect the axis v =0
in the v — 2 plane. Then in view of the uniqueness for vp = 0 we see that x(t) and /()
are solutions of ordinary differential equation (10) with the Lipschitz continuous r.h.s.,
and, because they pass through the same point of the phase space and the function z ()
is monotonous, we have x(t) = 2/(t). This result may be formulated as the following.

Theorem 3. Let either assumption (c) or (d) be valid. Then there exist the values € > 0,
¢’ > 0 and Lipschitz continuous function H : D(¢) — R, such that for any (vo, zo) € D(g’)

(i) there is a unique solution of the problem (7)-(9);
(ii) any solution of this problem satisfies the ordinary differential equation (10).

This theorem covers all weakly-relativisic region of (vg, z) . The following statement
involves also a part of the ultra-relativistic region in case of purely retarded interactions.

Theorem 4. Under the assumption (c) there exists eg > 0 such that for (v, xo) , vo < 0,
satisfying the inequality k(1 — 08)1/2/300 < &g , there is a unique solution of the problem

(7)-(9).
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