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Abstract

Reductions and classes of new exact solutions are constructed for a class of Galilei-
invariant heat equations.

It is well-known that the n-dimensional linear heat equation

kut = u11 + . . .+ unn (1)

where ut = ∂u
∂t , uij = ∂2u

∂xi∂xj
, is invariant under the extended complete Galilei algebra

AG̃2(1, n). Unfortunately, the equation (1) cannot describe a great number of real processes
of heat and mass transfer. The known nonlinear generalization of the equation (1)

ut +∇(F (u)∇u) = 0 (2)

is invariant under the Galilei algebra only if F (u) = const. Galilei-invariant nonlinear
generalizations of the equation (1) were described in the paper [1].

Let formulate the necessary results. Consider the equation of the second order

ut + F (t, x, u, u
1
, u

2
) = 0, (3)

where u
s

is the set of s-th order partial derivatives of u with respect to the space variables
x1, x2, . . . , xn (s = 1, 2).

The equation (3) is invariant under the extended classical Galilei algebra AG̃(1, n) iff
it is of the form

ut +
1

2m
(∇u)2 + Φ(< 1 >;< 2 >; . . . ;< n >) = 0, (4)

where Φ is an arbitrary smooth function, m = const,
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< 1 >= u11 + u22 + . . .+ unn,

< 2 >=
∣∣∣∣u11 u12

u21 u22

∣∣∣∣ +
∣∣∣∣u11 u13

u31 u33

∣∣∣∣ + . . .+
∣∣∣∣un−1n−1 un−1n

unn−1 unn

∣∣∣∣ ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

< n >=

∣∣∣∣∣∣∣∣∣
u11 u12 . . . u1n

u21 u22 . . . u2n
...

...
...

un1 un2 . . . unn

∣∣∣∣∣∣∣∣∣ ,
i.e., < k > is the sum of k-th order minors of the main diagonal of the matrix (uij).

The basis of the algebra AG̃(1, n) is formed by the following vector fields

Pa = ∂a, Ga = t∂a +mxa∂u, T = ∂t,

Jab = xa∂b − xb∂a, M = m∂u,

where ∂t = ∂
∂t , ∂u = ∂

∂u, ∂a = ∂
∂xa

(a < b; a, b = 1, . . . , n).

If L is a subalgebra of the rank r of the algebra AG̃(1, n), s = n+2−r and ω1(t, x), . . . ,
ωs−1(t, x), ωs(t, x, u) are the functionally independent invariants of L, then the ansatz
ωs = ϕ(ω1, . . . , ωs−1) reduces the equation (4) to a differential equation containing only

ϕ, ωi, and derivatives ∂ϕ
∂ωi

, ∂2ϕ
∂ωi∂ωi

where i, j,= 1, . . . , s− 1 (see [2]). Such a reduction is
called a symmetry reduction.

In the present paper, the symmetry reduction of the equation (4) to ordinary differential
equations is carried out.

It is not difficult to convince of that subalgebras of the rank n of the algebra invariance
of the equation (4) considered with respect to G̃(1, n)-conjugation will be the same as for
the algebra of invariance of the n-dimensional nonlinear Schrödinger equation

2mi
∂ψ

∂t
=
∂2ψ

∂x2
1

+ . . .+
∂2ψ

∂x2
n

+ ψF (|ψ|) = 0,

where F is an arbitrary smooth function. It allows us to use the results of the paper [3].
As in [3], in the present paper we confine ourselves by consideration of such subalgebras

of the rank n which do not contain operator M .

Let AO[p, q] =< Jab; a, b = p, . . . , q >;

Φ(d0, d1, γ1) =< Gd0 + γ1Pd0 , . . . , Gd0 + γ1Pd1 > +)AO[d0, d1];

AE(n− k) =< Pk+1, . . . , Pn > +)AO[k + 1, n] (0 ≤ k ≤ n− 1);

AE(n− n) = AE(0) = 0;

AE1(n− k) =< Gk+1, . . . , Gn > +)AO[k + 1, n] (0 ≤ k ≤ n− 1);

AE1(n− n) = AE1(0) = 0.

Let d1, . . . , dp be natural numbers which satisfy the condition 1 = d0 < d1 < . . . <
dp ≤ n. With respect to G̃(1, n)-conjugation, the algebra AG̃(1, n) contains 6 maximal
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subalgebras of the rank n. For each of these algebras we show a corresponding ansatz and
reduced equation.

1) AE(n) : u = ϕ(t), ϕ̇+ Φ(0; 0; . . . ; 0) = 0.

2) Φ(1, d1, γ1)
⊕
. . .

⊕
Φ(dp−1 + 1, dp, γp)

⊕
AE(n− k) (dp = m; 1 ≤ k ≤ n) :

u = m
2

p∑
j=1

x2
dj−1

+ . . .+ x2
dj

t− γj
+ ϕ(t), ϕ̇+ Φ(mσ1;m2σ2; . . . ,mkσk; 0; . . . ; 0) = 0,

where
σ1 = y1 + y2 + . . .+ yk,

σ2 = y1y2 + y1y3 + . . .+ yk−1yk,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σk = y1y2 . . . yk

are the elementary symmetrical polynomials and y1 = . . . = yd1 = 1
ω − γ1

,

yd1+1 = . . . = yd2 = 1
ω − γ2

, . . . , ydp−1+1 = . . . = ydp = 1
ω − γp

.

3) < T + αM, J12 + βM >
⊕
AE(n− 2) (α, β ∈ R) :

u = αmt+ β arctan x1
x2

+ ϕ(x2
1 + x2

2),

αm+ 1
2m(β2ω−1 + 4ωϕ̇2) + Φ(4ϕ̇+ 4ωϕ̈; 4ϕ̇2 + 8ωϕ̇ϕ̈− β2ω−2; 0; . . . ; 0) = 0.

4) < T + αM >
⊕
AE(n− 1) (α ∈ R) :

u = αmt+ ϕ(x1), αm+ 1
2mϕ̇2 + Φ(ϕ̈; 0; . . . ; 0) = 0.

5) < T + αG1 >
⊕
AE(n− 1) (α > 0) :

u = αmtx1 − 1
3α

2mt3 + ϕ(αt2 − 2x1), −αm2 ω + 2
mϕ̇2 + Φ(4ϕ̈; 0; . . . ; 0) = 0.

6) < T + αM >
⊕
AO[1, k]

⊕
AE(n− k) (α ∈ R; 3 ≤ k ≤ n) :

u = αmt+ ϕ
( k∑

i=1

x2
i

)
, αm+ 2

mωϕ̇2 + Φ(y1; . . . ; yk; 0; . . . ; 0) = 0,

where yp = 2p(k − 1)!
(k − p)!p! (ϕ̇)p−1(kϕ̇+ 2pωϕ̈)(p = 1, . . . , k).
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