
Nonlinear Mathematical Physics 1996, V.3, N 3–4, 319–329.

Discrete Symmetry and Its Use to Find

Multi-Soliton Solutions of the Equations

of Anisotropic Heisenberg Ferromagnets

N.A. BELOV †, A.N. LEZNOV ‡ and W.J. ZAKRZEWSKI †

†Institute for Problems in Mechanics,
Russian Academy of Sciences, Moscow, Russia

‡Institute for High Energy Physics, Protvino, Russia
†Department of Mathematical Sciences,

University of Durham, Durham DH1 3LE, England

Abstract

Explicit solutions of the chain equations describing discrete transformations of the
Landau-Lifshitz equation are found in the most economical way. This chain can be
considered as a generalization of the Toda chain (the case of a rational spectral parame-
ter) to the case of an elliptic curve. We show that the process of deriving multi-soliton
solutions of the Landau-Lifshitz equation in an explicit form with help of these results
becomes relatively straightforward.

1 Introduction

In one of our previous papers [1], we gave an explicit solution of the chain of discrete
transformations for the Landau-Lifshitz (L-L) equation describing a classical anisotropic
Heisenberg ferromagnet. Our solution was derived by direct, although rather complicated,
calculations.

In another paper [2], we have found and investigated solutions of some chains of equa-
tions. These equations, in our opinion, play the fundamental role in the problems con-
nected with elliptic curves in the same sense as the equations of the Toda chain play in
the case of rational curves [3].

One of the aims of this paper is to use the results of [2] to derive multi-soliton solutions
of the L-L equation in the most economic way.

Let us add that this problem has been studied before. In fact in [4], this problem was
considered from the point of the Lax pair representation, while in [5] it was discussed on
the basis of the Hamiltonian formalism.

2 L–L equation and its discrete transformation

For completeness, let us start by repeating the statment of the problem as given in [1].
The L–L equation arises out of the generalization of the Heisenberg model of isotropic
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ferromagnets to an anisotropic case in the classical region. In this formulation, which is
close to the original [6], the L-L equation describes the evolution of a unit vector field ~S
as a function of time t and one space variable x

~St = ~S × ~Sxx + ~S × (Ĵ ~S), Ĵ = diag(J1, J2, J3),

where indices t and x denote the time and the space derivatives and constants Jn are
related to the moments of inertia of a nonaxisymmetric ”rigid body”.

It is convenient to perform a stereographic projection and so to introduce complex
fields u and v

u =
S1 + iS2

1 + S3
, v =

S1 − iS2

1 + S3
.

Then, disregarding the “reality” condition u∗ = v, the equation can be represented as a
system

ıut + uxx −
2v

1 + uv
(u2

x + R(u)) + Ru(u) = 0,
(1)

−ıvt + vxx −
2u

1 + uv
(v2

x + R(v)) + Rv(v) = 0,

where

R(u) = αu4 + γu2 + α, α =
J2 − J1

4
, γ =

J1 + J2

2
− J3.

System (1) is invariant with respect to the following discrete nonlinear transformation
u → U , v → V :

U =
1
v
,

1
1 + UV

− 1
1 + uv

=
vvxx − v2

x + α(v4 − 1)
(vx)2 + R(v)

.

This transformation plays the key role in our work. In fact, we will use it in the following
way. Instead of solving the original equations (1), we will consider the transformation as
an iterative procedure for generating from one set of functions u and v another one. Then,
having ”solved” this iterative procedure, we will start from a given solution of (1) and
will generate many other solutions, among which we will find the ones which satisfy the
conjugation condition.

Thus, if we denote u and v as un and vn, and U and V as un+1 and vn+1, respectively,
we will have a chain

un+1 =
1
vn

,
1

1 + un+1vn+1
− 1

1 + unvn
=

(ln vn)xx + α(v2
n − v−2

n )
(ln vn)2x + α(v2

n + v−2
n ) + γ

(2)

which, in what follows, we will call the L-L chain.
Looking at (2) and its inverse form

vn−1 =
1
un

,
1

1 + un−1vn−1
− 1

1 + unvn
=

(lnun)xx + α(u2
n − u−2

n )
(lnun)2x + α(u2

n + u−2
n ) + γ

,

we observe that, in general, the chain is infinite except when for some u0 or/and vr (0 < r):

u0
2
x + R(u0) = 0, vr

2
x + R(vr) = 0.
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In this case, we cannot find v−1 or/and vr+1, and we have the interrupted L-L chain from
left or/and right ends.

Similar problems have been studied before. Solutions of the corresponding discrete
chains for many integrable systems are given in [7]. All the chains discussed there are
closelly related to the Toda chain. The L-L chain is more complicated and, as we will
show, leads to the Toda chain only in a some limiting case.

3 Solution of the linear problem satisfying a boundary
condition at the left end of the L-L chain

Here we will discuss the constraints to be satisfied by the solutions u0, v0 of system (1)
which arise when we impose the boundary conditions on (2).

Let

u0
2
x + R(u0) = 0. (3)

Then, the first equation in (1) is satisfied if u0t = 0. Next we rewrite the second equation
introducing new variables and a new unknown function: s = ln u0 and q = (u0v0 −
1)/(u0v0 + 1). Then, q(t, s) has to satisfy

ıqt + [P (q′ + q2)−Qq]′ = 0,

where

P = γ + 2α cosh 2s, Q ≡ P ′

2
= 2α sinh 2s,

and the prime denotes (here and in what follows) the derivative with respect to s. Next
we introduce a function φ given by

φ′ = q, −ıφt = P (q′ + q2)−Qq.

This allows us to reduce the problem to a linear equation for the function y = expφ:

ıyt + Py′′ −Qy′ = 0. (4)

Note that for any solution of (4), we take q = (ln y)′ and find that

u0(s) = es, v0(s) = e−s 1 + (ln y)′

1− (ln y)′
.

Here s(x) is the elliptic function (sn), which satisfies the equation

s2
x + P (s) = 0,

which follows from (3).
Note also that separating off the time variable in (4) by puting yt = ıλ2y, we obtain

an ordinary differential equation

Ly ≡ Py′′ −Qy′ = λ2y, (5)
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which possesses the following first integral

I(y) ≡
(

λ− δ1δ2

P

)
y′2 − 2

λQ

P
yy′ − λ

(
λ

P
− 1

)
y2 = const, (6)

where δ1,2 = γ ± 2α (note, for testing, that δ1δ2 = Q2−P (Q′−P )). The general solution
of (5) has a form

y = C1y1 + C2y2, y1,2 ≡ yε =
√

λP − δ1δ2 exp(εJ), ε = ±1,

J = ∆
∫ √

Pds

λP − δ1δ2
, ∆ =

√
(λ− δ1)(λ− δ2)λ (const = −4C1C2∆2),

where J with help of substitution ξ = cosh s may be represented as a sum of two elliptic
integrals of the first and third kinds [9]. Underline that I(y1) = I(y2) = 0.

For the further discussion, it is useful to define also a primitive solution of (4) for a
fixed value of λ as that

yε
λ = eıλtyε

λ. (7)

A consequence of this definition is that: Lyε
λ = λyε

λ, I(yε
λ) = 0.

4 Solution of the semi-infinite L-L chain

Here, for completeness, we present again the results first given in [2]

4.1 Statement of the problem

We want to find a solution of the L-L chain starting from its left end:

u1 = es, v1 = e−s 1 + (lnY )′

1− (lnY )′
,

where Y is an arbitrary function of s. We rewrite (2) as a chain only for unknowns vn(
excluding un by help of equality un =

1
vn−1

)
1

vn+1 + vn
+

1
vn + vn−1

=
(lnFn)x

2vnx
≡ (lnFn)′

2v′n
, (8)

where

Fn = R(vn) + v2
nx = R(vn)− Pv′2n .

Then boundary conditions take a form

v0 = e−s, v1 = v0
Y + Y ′

Y − Y ′ . (9)
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4.2 Elliptic Toda I chain

Next we introduce the functions ρn by

exp ρn =
(vn)2x + R(vn)

(vn−1 + vn)(vn + vn+1)
. (10)

Then, it is not difficult to convince oneself, by differentiating and using the invariance

of (8) with respect to the transformation: vn → 1
vn

, that the following equations are

satisfied

(ρn)xx = − exp ρn−1 + 2 exp ρn − exp ρn+1 + α(v2
n−1 − 2v2

n + v2
n+1),

expπn =
vn−1vn+1

v2
n

exp ρn, (11)

(πn)xx = − expπn−1 + 2 expπn − expπn+1 + α(v−2
n−1 − 2v−2

n + v−2
n+1).

System (11), called in [2] the first elliptic Toda chain (EToda1), is very useful in the
(trigonometric) case α = 0, because, in this case, it becomes equivalent to two noninter-
acting Toda chains. Let us consider this case in detail.

4.3 Trigonometric case

Assuming for simplicity that γ = 1, we find that s = ıx. We can rewrite equations (11) in
terms of the variable s and then exploit the fact that the solution of the usual Toda chain
with a fixed end (exp ρ0 = expπ0 = 0) is well known [3]:

exp ρn =
Dn−1(f)Dn+1(f)

Dn(f)2
, expπn =

Dn−1(g)Dn+1(g)
Dn(g)2

,

where f, g are arbitrary functions and Dn(f) is the n-th order principal minor of the
matrix

f f ′ f ′′ · · ·
f ′ f ′′ f ′′′

f ′′ f ′′′ f ′′′′

· · ·

 .

Then vn is proportional to the ratio of Dn(g) and Dn(f). Using (9) and a relation which
follows from the definition of exp ρ1, namely,

v2
1 − v′21

(v0 + v1)(v1 + v2)
=

D2(f)
f2

,

we obtain

vn = e−s Dn(g)
Dn(f)

, g = Y + Y ′, f = Y − Y ′,

which give us a solution of the semi-infinite L-L chain (8)–(9) in this special case. Note
that we have reproduced the calculations of the Appendix in [1].
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4.4 Elliptic Toda II chain

In the general case, ie, when α 6= 0 we first seek solutions of (8) in the form

vn = (−1)nv0
1 + wn

1− wn
. (12)

Then from (8) we get a chain
1

wn − wn+1
− 1

wn−1 − wn
=

An

Bn
, (13)

where

An = (P (w′
n + w2

n)−Qwn)′, Bn = Pw′
n(w′

n + w2
n − 1) + Qwn(w2

n + 1)−Q′w2
n.

The boundary conditions now take the form

w0 = 0, w1 =
Y

Y ′ . (14)

Using (8) and (10), it is easy to verify that

(ln(vn − v0))xx =
(
1− (vn+1 + v0)(vn−1 + v0)

(vn − v0)2
)

exp ρn − α(v2
n − v2

0)− 2
( v0x

vn − v0

)
x
.

Generalizing, it further we obtain(
ln

vn ± v0

v0

)
xx

=
(
1− (vn+1 ∓ v0)(vn−1 ∓ v0)

(vn ± v0)2
)

exp ρn − α(v2
n − v2

0) +
(
sx

vn ∓ v0

vn ± v0

)
x
.

Next we define new functions θ±n :

exp θ±n =
(vn+1 ± (−1)n+1v0)(vn−1 ± (−1)n−1v0)

(vn ± (−1)nv0)2
exp ρn.

Then from (10)–(12) and recalling the last formulae, we find that θ±n and wn satisfy the
following system of equations

(θ±n )xx = − exp θ±n−1 + 2 exp θ±n − exp θ±n+1 + (sx(w±1
n−1 − 2w±1

n + w±1
n+1))x,

exp θ−n =
wn−1wn+1

w2
n

exp θ+
n . (15)

Note that in terms of wn: exp θ+
n = Bn(wn+1 − wn)−1(wn − wn−1)−1.

Let us observe that if we consider the following system of equations for the unknown
functions an and bn

an−1an+1

a2
n

=
(sxbn − anx

an

)
x
≡ P

(a′n − bn

an

)′
+ Q

(a′n − bn

an

)
,

(16)
bn−1bn+1

b2
n

=
(sxan − bnx

bn

)
x
≡ P

(b′n − an

bn

)′
+ Q

(b′n − an

bn

)
,

then equations (15) follow from it due to the following simple relations

exp θ−n =
an−1an+1

a2
n

, exp θ+
n =

bn−1bn+1

b2
n

, wn =
an

bn
.

Systems (15) or (16) were called in [2] the second elliptic Toda chain (EToda2). We expect
that EToda2 plays the same role in the case of an elliptic curve (the elliptic parametrization
of the spectral parameter) as the ordinary Toda chain plays in the case of a rational curve
[8].
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4.5 Solution of the chain in the general case

Next we impose the following set of boundary conditions at the left end of the chain (16)

a0 = 0, b0 = 1, a1 = Y, a2 = det
(

Y LY
Y ′ (LY )′

)
. (17)

The last condition (instead of b1) comes (13) for n = 1.
As we have shown in [2], the following expression is a solution of (16) and (17)

an = (AB)r
n, bn = (AB)c

n, (18)

where (AB)r(c)
n denote principal n-th order minors of the matrix, which is derived from

AB by excluding its first row (column):

E =



0 Y ′ Ỹ L′ L̃ L′
2 · · ·

Y L PỸ ′ L2 PL̃′ L3

Y ′ L′ L̃ L′
2 L̃2 L′

3

L L2 PL̃′ L3 PL̃′
2 L4

L′ L′
2 L̃2 L′

3 L̃3 L′
4

L2 L3 PL̃′
2 L4 PL̃′

3 L5

· · ·


.

Here Ln =
n︷ ︸︸ ︷

LL...L Y, Ỹ = Y ′′ − Y, L̃n = L′′
n − Ln = (L̃)n, the operator L is defined by

(5).

5 Elliptic Toda II chain with two fixed ends

In this section we want to derive conditions on the initial function Y , under which the
solution of the last section will satisfy the additional condition b2n+1 = 0. For this purpose,
it is necessary to consider more carefully the structure of the AB matrix. The elements of
this matrix contain only four different functional structures: Lk, L

′
k, L

′′
k−Lk, P (L′′

k−Lk)′.
Let us calculate them when the initial function Y is chosen as

Y =
2n+1∑
k=1

cky
εk
k =

∑
yεk

λk
, (19)

where primitive functions yε
k are defined by (5) and constants ck are put in as multipliers.

First we note the following identities, which will be useful in what follows

Lyk = λkyk, y′k = qkyk, qk =
λkQ + εk

√
∆(λk)P

Pλk − g1g2
,

(20)
∆(λ) ≡ λ(λ− g1)(λ− g2)

so ε = ±1 correspond to the two linear independent solutions of (5).
Using this notation, we have

L′
r =

∑
ckqkykλ

r
k, L′′

r − Lr =
∑(λk

P
− 1

)
ykλ

r
k = −

∑
q̃kqkykλ

r−1
k ,
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P (L′′
r − Lr)′ = −

∑
q̃kλ

r
kyk, (21)

where q̃k =
λkQ + ε

√
∆(λk)P

P
. All these identities have a pure algebraic character and

can be checked directly from the definitions.
The simplest way to understand the general construction is to consider first the simplest

example. Let n = 1. Then the condition b3 = 0 together with (18) implies that the
determinant of the matrix

∑
qkyk −

∑
λ−1

k qkq̃kyk
∑

λkqkyk∑
λkyk −

∑
q̃kyk

∑
λ2

kyk∑
λkqkyk −

∑
qkq̃kyk

∑
λ2

kqkyk

 (22)

must vanish. This is because each column of this matrix is a linear combination of the
three vectors:

tk =

 qkyk

λkyk

λkqkyk

 ,

and so the determinant of the matrix is proportional to the product of the determinant of
a matrix constructed from these columns and the determinant of the following matrix

det


1 1 1

q̃1

λ1

q̃2

λ2

q̃3

λ3

λ1 λ2 λ3

 .

Thus, using the definition of q̃k, we finally obtain the condition for the interruption of
the chain at the third step, ie, b3 = 0 in the following form

det3


1 1 1
λ1 λ2 λ3

√
∆1

λ1

√
∆2

λ2

√
∆3

λ3

 = 0. (23)

From this example, the situation in the case of an arbitrary n is quite clear and as
a direct corollary of b2n+1 = 0, we conclude that we have to set to zero det2n+1 of the
matrix, each column of which has the form

ak =



1
λk

√
∆k

λk

λ2
k√
∆k

..............
λn−2

k

√
∆k


. (24)

In the trigonometric case α = 0, (24) coincides with the corresponding condition on the
parameters λ of [1].
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6 Multi-soliton solutions of the L-L equation

Here we use the results of the preceding sections to construct n-soliton solutions of the
L–L equation in an explicit form.

To do this, we recall the solution of the L–L equation with vn, un given in terms
of σ functions (12). Then, given our boundary conditions, we have the following chain
of solutions of the L–L equation obtained by the successive applications of the discrete
transformation

exp s

exp−s
1 + (lnY )′

1− (lnY )′

 → ..... →


exp s

1− σn

1 + σn

exp−s
1 + σn+1

1− σn+1

 → ... →


exp s

1− σ2n

1 + σ2n

exp−s
1 + σ2n+1

1− σ2n+1

 , (25)

where → denotes that we perform our discrete transformation.
Next we observe that if we find such a function Y (all σn are expressed in terms of Y

and its derivatives) that

v∗2n+1 = u1, u∗2n+1 = v1, (26)

then in the middle of the chain we have

vn+1∗ = un+1

and so our procedure gives us a solution of the L–L equation which automatically satisfies
the required reality condition.

To impose (26), let us, first of all, consider the equation for b2n (see (16)):

(b′2n −
√

Pa2n

b2n

)′
=

b2n−1b2n+1

b2
2n

= 0

or in other words

a2n

b2n
= (ln b2nf)′,

where f ′ =
c√
P

f , and c is some constant. Then the condition (26) takes the simple form

Y = (b2nf)∗. (27)

However, using (27) it is possible to determine and solve the conditions that the pa-
rameters of the initial solution have to satisfy. Let us look first at the simplest case;
namely, n = 1. The restrictions on the values of λ are contained in (23). With respect to
λ1, (23) is a cubic equation with two obvious roots: λ1 = λ2, λ1 = λ3 (which are not
interesting because they imply a3 = 0 in this case). After rewriting (23) in an explicit
form, we immediately determine the third root as

λ1 =
g1g2(λ2 − λ3)2

λ2λ3

(√R2

λ2
−
√

R3

λ3

)2
. (28)
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Notice that from (23) it follows directly that

λ2 − λ3√
R2

λ2
−
√

R3

λ3

=
λ1 − λ2√
R1

λ1
−
√

R2

λ2

=
λ1 − λ3√
R1

λ1
−
√

R3

λ3

. (29)

Next using (18), with the help of (7) we obtain

b2 =
1
2

3∑
i,j=1

1√
P

(√Ri

λi
−

√
Rj

λj

)
det2

(
y′i y′j

λiyi λjyj

)
.

Thus, we see that b2 is a linear combination of three functions.
Let us now show that each function yij ,

yij = det2

 y′i√
P

y′j√
P

λiyi λjyj

 f, (30)

is a primitive solution (5) taken with an opposite sign divided by the root of the cubic
function R(λ), or in other words

y′12 = y12

λ̃3Q + ε
√

R(λ̃3)P

λ̃3P + g1g2

, (31)

where

λ̃3 =
g1g2(λ1 − λ2)2

λ1λ2

(√
R(λ1)
λ1

−
√

R(λ2)
λ2

)2

(where by ε we denote the fact of the change of the sign). From the definition (30) and
(7), we can convince ourselves that (31) is satisfied. So if

Y =
∑

yk, then b2f ≡
∑

i6=k,j 6=k

ỹk

√
Ri −

√
Rj

λi − λj
,

where ỹk are the additional (to yk) linearly independent solutions of (5).
From this last relation, it is not difficult to obtain restrictions (keeping in mind (25))

to be imposed on the parameters λs, cs. Compare with the analogical calculations in the
trigonometric case in [1].

7 Conclusions

The main results of this paper are the explicit formulae presenting the general solution of
the elliptic Toda chain with fixed both ends and n-soliton solutions of the L-L equation
which follow from it as a direct corollary. We have not addressed here the question of
the application of our results to physical problems nor performed the comparison with
similar results obtained by other methods. We hope to discuss these problems in a future
publication.
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