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Abstract

A complete set of inequivalent two-dimensional subalgebras of the maximal Lie in-
variance algebra of the Euler equations is constructed. Using some of them, the Euler
equations are reduced to systems of partial differential equations in two independent
variables which are integrated in quadratures.

As well as developing approximate and numerical methods, finding exact solutions of
the Euler equations (EEs) for an ideal incompressible fluid is an important problem of
modern mathematical physics and hydrodynamics. There exist some ways to solve this
problem. One of them is to use symmetry analysis [1, 2, 3]. We construct a complete set
of inequivalent two-dimensional subalgebras of the maximal Lie invariance algebra of the
EEs. Using some of them, we reduce the EEs to systems of partial differential equations in
two independent variables which can be integrated in quadratures. As a result, we obtain
classes of exact solutions of the EEs that contain arbitrary functions.

It is known [4], that the EEs

~ut + (~u · ~∇)~u+ ~∇p = ~0, div ~u = 0 (1)

are invariant under the infinite-dimensional algebra A(E) generated by the following basis
elements:

∂t, Jab = xa∂b − xb∂a + ua∂ub − ub∂ua (a < b),

Dt = t∂t − ua∂ua − 2p∂p, Dx = xa∂a + ua∂ua + 2p∂p,

R(~m) = R(~m(t)) = ma(t)∂a +ma
t (t)∂ua −ma

tt(t)xa∂p,

Z(χ) = Z(χ(t)) = χ(t)∂p.

(2)

In the following, ~u = {ua(t, ~x)} denotes the velocity of fluid, p = p(t, ~x) denotes the
pressure, ~x = {xa}, ∂t = ∂/∂t, ∂a = ∂/∂xa, ~∇ = {∂a}, 4 = ~∇ · ~∇ is the Laplacian, ma =
ma(t) and χ = χ(t) are arbitrary smooth functions of t (for example, from C∞((t0, t1),R)).
The fluid density is set equal to unity. Summation over repeated indices is implied, and
we have a, b = 1, 2, 3 and i, j = 1, 2.
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The set of operators (1) determines the maximal Lie invariance algebra of the EEs [4].
A complete set of A(E)-inequivalent two-dimensional subalgebras of A(E) is exhausted

by the following classes of algebras:

0. A2
0 =< ∂t, D

t > .

1. A2
1(κ1, κ2, ε) =< ∂t, D

x + κ1D
t + κ2J12 + Z(ε) > where ε(1− κ1) = 0 and κ1 6= 0 .

2. A2
2(κ, µ) =< ∂t, J12 + κDt +R(0, 0, µ) > where κ 6= 0.

3. A2
3(κ) =< ∂t, R(0, 0, 1) + κDt >, where κ 6= 0.

4. A2
4(κ1, κ2) =< Dt + κ1J12, D

x + κ2J12 > .

5. A2
5(κ, µ, ε) =< Dt +κDx, J12 +R(0, 0, µ|t|κ)+Z(ε|t|2(κ−1)) > , where we can assume

that µ ∈ {−1; 0; 1} and ε ∈ {−1; 0; 1} if µ = 0.

6. A2
6(κ1, κ2, σ, µ, ν, ε)=<Dt+κ1D

x+κ2J12, R(|t|σ(µ cos τ, µ sin τ, ν))+Z(ε|t|κ1−2+σ)>,
where τ = κ2 ln |t|. The coefficients µ and ν satisfy either the condition µ2 + ν2 = 1 (then
we can assume that ε(κ1 + σ − 1) = 0) or the condition µ = ν = 0 (then we can assume
that ε = 1). In the case κ2 = 0, we can take µ = 0.

7. A2
7(κ1, κ2) =< ∂t + κ1J12, D

x + κ2J12 > .

8. A2
8(κ, µ, ε) =< ∂t +κDx, J12 +R(0, 0, µeκt)+Z(εe2κt) >, where we can assume that

κ, µ ∈ {−1; 0; 1} and ε ∈ {−1; 0; 1} if µ = 0.

9. A2
9(κ1, κ2, σ, µ, ν, ε) =< ∂t+κ1D

x+κ2J12, R(eσt(µ cos τ, µ sin τ, ν))+Z(εe(κ1+σ)t)>,
where τ = κ2t. The coefficients µ and ν satisfy either the condition µ2 + ν2 = 1 (then we
can assume that ε ∈ {−1; 0; 1} and ε(κ1 + σ) = 0 ) or the condition µ = ν = 0 (then we
can assume that ε = 1 ). In the case κ2 = 0, we can take µ = 0.

10. A2
10 =< Dx, J12 > .

11. A2
11(~m) =< Dx, R(~m) >, where ~m = ~m(t) is a smooth vector-function of t, ~m 6≡ ~0.

The algebras A2
11(~m) and A2

11( ~̃m) are equivalent if ∃ε, δ ∈ R, ∃B ∈ O(3), ∃C 6= 0 :
~̃m(t̃) = CB~m(t), where t̃ = te−ε + δ.

12. A2
12(κ, η) =< Dx + κJ12, R(0, 0, η(t)) >, where η = η(t) is a smooth function of t,

η 6≡ 0, κ 6= 0. The algebras A2
12(κ, η) and A2

12(κ̃, η̃) are equivalent if κ̃ = κ and ∃ε, δ ∈ R,
∃C 6= 0 : η̃(t̃) = Cη(t), where t̃ = te−ε + δ.

13. A2
−1(κ, χ) =< Dx + κJ12, Z(χ(t)) >, where χ = χ(t) is a smooth function of t,

χ 6≡ 0, κ ∈ R. The algebras A2
−1(κ, χ) and A2

−1(κ̃, χ̃) are equivalent if κ̃ = κ and ∃ε, δ ∈ R,
∃C 6= 0 : χ̃(t̃) = Cχ(t), where t̃ = te−ε + δ.

14. A2
13(ρ

1, χ1, ρ2, χ2) =< J12 + R(0, 0, ρ2) + Z(χ2), R(0, 0, ρ1) + Z(χ1) >, where ρi

and χi are smooth functions of t, (ρ1, χ1) 6≡ (0, 0) and ρ1
ttρ

2 − ρ1ρ2
tt ≡ 0. The algebras

A2
13(ρ

1, χ1, ρ2, χ2) and A2
13(ρ̃

1, χ̃1, ρ̃2, χ̃2) are equivalent if ∃C1 6= 0, ∃ε1, ε2, δ, C2 ∈ R,
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∃θ ∈ C∞((t0, t1),R):

ρ̃1(t̃) = C1e
−ε2ρ1(t), ρ̃2(t̃) = e−ε2(ρ2(t) + C2ρ

1(t)),

χ̃1(t̃) = C1e
2(ε1−ε2)(χ1(t) + θtt(t)ρ1(t)− θ(t)ρ1

tt(t)),

χ̃2(t̃) = e2(ε1−ε2)(χ2(t) + θtt(t)ρ2(t)− θ(t)ρ2
tt(t)+

C2(χ1(t) + θtt(t)ρ1(t)− θ(t)ρ1
tt(t))),

(3)

where t̃ = te−ε1 + δ.

15. A2
14(~m

1, χ1, ~m2, χ2) =< R(~m1(t))+Z(χ1(t)), R(~m2(t))+Z(χ2(t)) >, where ~mi and
χi are smooth functions such that ~m1

tt · ~m2− ~m1 · ~m2
tt = 0 and 6 ∃Ci∈R : Ci(~mi, χi) ≡ (~0, 0).

The algebras A2
14(~m

1, χ1, ~m2, χ2) and A2
14( ~̃m1, χ̃1, ~̃m2, χ̃2) are equivalent if ∃ε1, ε2, δ∈R,

∃B∈O(3), ∃{aij}i,j=1,2 : det{aij} 6= 0, ∃~l ∈ C∞((t0, t1),R3):

~̃mi(t̃) = e−ε2aijB~m
j(t),

χ̃i(t̃) = e2(ε1−ε2)aij(χj(t) +~ltt(t) · ~mj(t)−~l(t) · ~mj
tt(t)),

(4)

where t̃ = te−ε1 + δ.

Using the algebras A2
1 − A2

14 (sometimes, when additional restrictions for parameters
are satisfied), we can construct an ansatz that reduces the EEs to a system of partial
differential equations in two independent variables. To reduce the EEs, we use the algebras
A2

13 and A2
14. They are different from other two-dimensional subalgebras of A(E) in

that the reduced equations obtained by means of them can be integrated completely in
quadratures.

Let us describe how the Euler equations are reduced by means of the algebra A2
13(ρ

1, χ1,
ρ2, χ2). It is suitable for construction of an ansatz only for such t that ρ1(t) 6= 0. If this
condition is satisfied, the algebra given above is equivalent to the algebra

A2
13(ρ, 0, ρ̂, χt), where ρ̂(t) = ερ(t)

∫
(ρ(t))−2dt, ε∈{0; 1}. (5)

An ansatz constructed by means of algebra (5) has the form:

u1 = x1w
3 − x2r

−2(w1 − χ(t)),

u2 = x2w
3 + x1r

−2(w1 − χ(t)),

u3 = (ρ(t))−1(w2 + ρt(t)x3 + ε arctanx2/x1),

p = s− 1
2ρtt(t)(ρ(t))−1x2

3 + χt(t) arctanx2/x1,

(6)

where wa = wa(z1, z2) and q = q(z1, z2) are new unknown functions, z1 = t, z2 = r =
(x2

1 + x2
2)

1/2. Substituting ansatz (6) into the EEs, we obtain the system of differential
equations (for the functions wa and s):

w3
1 + z2w

3w3
2 + (w3)2 − z−4

2 (w1 − χ)2 + z−1
2 s2 = 0,

w1
1 + z2w

3w1
2 = 0,

w2
1 + z2w

3w2
2 + εz−2

2 (w1 − χ) = 0,

2w3 + z2w
3
2 + ρ1ρ

−1 = 0.

(7)
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Equations (7) imply that

w3 = −1
2ρtρ

−1 + ηz−2
2 , (8)

where η = η(t) is an arbitrary smooth function of z1 = t,

w1 = ϕ1(z), w2 = ϕ2(z)− ε

2

∫
ϕ1(z)− χ(τ)

z +
∫
ρ(τ)η(τ)dτ

ρ(τ) dτ, (9)

where τ = t, z = 1
2ρ(t)r

2 −
∫
ρ(t)η(t)dt, and

q =
1
4

((
ρt

ρ

)
t

− 1
2

(
ρt

ρ

)2
)
r2 +

ρ

4

∫ (ϕ1(z)− χ(τ))2

(z +
∫
ρ(τ)η(τ)dτ)2

dz − ηt ln |r| − η2

2r2
. (10)

In some cases, the expression for w2 is simplified:
a) w2 = ϕ2(z) if ε = 0;
b) w2 = ϕ2(z)− 1

2z
−1ϕ1(z)

∫
ρ(t)dt+ 1

2z
−1
∫
χ(t)ρ(t)dt if ε = 0 and η ≡ 0.

Ansatz (6) and formulae (8)–(10) determine a class of solutions of the EEs.
Let us describe how the Euler equations are reduced by means of the algebraA2

14(~m
1, χ1,

~m2, χ2). An ansatz corresponding to this algebra can be obtained only for such t that
rank(~m1(t), ~m2(t)) = 2. For these values of t, the parameter-function χi = 0 can be made
to vanish by means of the equivalence transformation (4). An ansatz corresponding to the
algebraA2

14(~m
1, 0, ~m2, 0) has the form

~u = ~w + λ−1(~ni · ~x)~mi
t − λ−1(~k · ~x)~kt,

p = s− 1
2λ
−1(~mi

tt · ~x)(~ni · ~x)− 1
2λ
−2(mi

tt · ~k)(~ni · ~x)(~k · ~x),
(11)

where ~w = (w1, w2, w3), wa = wa(z1, z2) and q = q(z1, z2) are new unknown functions,
z1 = t, z2 = ~k · ~x, ~m1

tt · ~m2 − ~m1 · ~m2
tt = 0, ~k = ~m1 × ~m2, ~n1 = ~m2 × ~k, ~n2 = ~k × ~m1, and

λ = λ(t) = ~k · ~k 6= 0.
Substituting ansatz (11) into the EEs, we obtain the system of differential equations

for the functions wa and q:

~w1 + (~k · ~w)(~w2 − λ−1~kt) + λ−1(~ni · ~w)~mi
t + s2~k + z2~e = ~0, (12)

~k · ~w2 = 0, (13)

where z1 = t and ~e = ~e(t) = 2λ−2(~m1
t · ~m2 − ~m1 · ~m2

t )~kt × ~k + λ−2(2~kt · ~kt − ~ktt · ~k)~k.
Equation (13) is integrated with respect to z2 to the following expression: ~k · ~w = ψ(t).

Here ψ = ψ(t) is an arbitrary smooth function of z1 = t, which can be made to vanish by
means of the transformation generated by the operator R(~l), where the vector-function ~l
is a solution of the system

~ltt · ~mi −~l · ~mi
tt = 0, ~k · (~lt − λ−1(~ni ·~l)mi

t + λ−1(~k ·~l)~kt) + η = 0.

Therefore, without loss of generality we may assume that ~k · ~w = 0.
Let f i = f i(z1, z2) = ~mi · ~w. Since ~m1

tt · ~m2 = ~m1 · ~m2
tt, it follows that

~m1
t · ~m2 − ~m1 · ~m2

t = C = const,
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and we may assume that C∈{0; 1}.
Let us multiply the scalar equation (12) by ~mi and ~k. We then obtain the linear system

of PDEs with variable coefficients in the functions f i and s:

f i
1 + Cλ−1((~mi · ~m2)f1 − (~mi · ~m1)f2)− 2Cλ−2((~k × ~kt) · ~mi)z2 = 0, (14)

s2 = 2λ−2(~ni · ~kt)f i + λ−2(~ktt · ~k − 2~kt · ~kt)z2.

Let us consider two possible cases.

A. Let C = 0
Then equations (14) have the forms f i

1 = 0, i.e. f i = f i(z), where z := z2. Therefore,
in this case we obtain the following solution of the EEs:

~u = λ−1(f i(z) + ~mi
t · ~x)~ni − λ−1(~kt · ~x)k,

p = 2λ−2(~ni · ~kt)
∫
f i(z)dz + 1

2λ
−2(~ktt · ~k − 2~kt · ~kt)z2−

1
2λ
−1(~ni · ~x)(~mi

tt · ~x)− 1
2λ
−2(~k · ~mi

tt)(~n
i · ~x)(~k · ~x),

(15)

where ~m1
t · ~m2 − ~m1 · ~m2

t = 0, ~k = ~m1 × ~m2, ~n1 = ~m2 × ~k, ~n2 = ~k × ~m1, λ = |~k|2, and
z = ~k · ~x.

Note. The equation

~m1
t · ~m2 − ~m1 · ~m2

t = 0 (16)

can be easily solved in the following way: Let us choose arbitrary smooth vector-functions
~m1 and ~l such that ~m1(t) 6= ~0, ~l(t) 6= ~0, and ~m1(t) ·~l(t) = 0 for the values of t considered.
Then the vector-function ~m2 = ~m2(t) is taken in the form

~m2(t) = ρ(t)~m1 +~l(t). (17)

Equation (16) implies ρ(t) =
∫
(~m1 · ~m1)−1(~m1

t ·~l − ~m1 ·~lt)dt.

B. Let C = 1
In this case, the general solution of system (14) can be presented in the form

f i(z1, z2) = θij(t)gj(z) + θi0(t)z,

where gi = gi(z) are arbitrary smooth functions of z := z2, (θ1i(t), θ2i(t)) are linearly
independent solutions of the system

θi
t + λ−1(~mi · ~m2)θ1 − λ−1(~mi · ~m1)θ2 = 0, (18)

and (θ10(t), θ20(t)) is a particular solution of the inhomogeneous system

θi
t + λ−1(~mi · ~m2)θ1 − λ−1(~mi · ~m1)θ2 = 2λ−2((~k × ~kt) · ~mi). (19)

Substituting the expressions for f i in ansatz (11), we obtain the following solution of the
Euler equations:

~u = λ−1(θijgj(z) + θi0z)~ni + λ−1(~ni · ~x)~mi
t − λ−1z~kt,

p = 2λ−2(~ni · ~kt)(θij
∫
gj(z)dz + 1

2θ
i0z2) + 1

2λ
−2(~ktt · ~k − 2~kt · ~kt)z2−

1
2λ
−1(~ni · ~x)(~mi

tt · ~x)− 1
2λ
−2(~k · ~mi

tt)(~n
i · ~x)(~k · ~x).

(20)
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Here ~m1
t · ~m2 − ~m1 · ~m2

t = 1, ~k = ~m1 × ~m2, ~n1 = ~m2 × ~k, ~n2 = ~k × ~m1, λ = |~k|2, and
z = ~k · ~x.

Note. A solution of the equation

~m1
t · ~m2 − ~m1 · ~m2

t = 1 (21)

can also be found in form (17). Equation (21) implies that

ρ(t) =
∫
|~m1|−2(~m1

t ·~l − ~m1 ·~lt − 1)dt.

We notice that results given in [5] partly coincide with ours. But it seems to us that
the paper [5] includes small incorrectnesses.
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