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Abstract

Asymptotic formulae for resolution of L-diagonal systems of ordinary differential equa-
tions with symmetrical matrices are derived.

1) We shall consider a system of linear differential equations

dx

dt
= (Λ(t) + Q(t))x, (1)

where x is an n-vector, Λ(t) is an (n× n) diagonal matrix, and Q(t) is an (n× n)-matrix
with summable elements in the interval (t0,∞). Such a system was called L-diagonal
system by I.M. Rapoport [1]. Studying these systems we assume that:

a) The elements ωi(t) (i = 1, 2, ..., n) of the diagonal matrix Λ(t) are summable in the
interval (t0, t1) for any finite t1;

b) There exists T0 big enough for any difference

Re ωi(t)− Re ωj(t), i, j = 1, ..., n,

not to change sign for t ≥ T0.
Then system (1) can be solved for t ≥ t0 and its n particular solutions have the form

xi = ηij(t) exp
t∫

t0

ωj(t)dt, i, j = 1, 2, ..., n,

where ηij(t) are continuous functions in the closed interval [t0,∞], and ηij(∞) = 0 when
i 6= j, ηjj(∞) = 1. I.M. Rapoport [1] found substitutions which can help us to reduce
systems of differential equations

dx

dt
= A(t)x (2)

to L-diagonal systems in the case when roots of the characteristic equation are simple.
In the paper [2] we suggested the method for construction of the mentioned substitutions
in the case when the roots of the characteristic equation for t ≥ t0 maintain constant
multiplicity.
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2) In this paper we suggest the method for construction of such substitutions for systems
of differential equations

B(t)
dx

dt
= A(t)x, (3)

where the matrix B(t) may not have an inverse matrix, when t ≥ t0.

3) We will consider instead of the system (3) the system

εB (t) dx
dt = A(t)x, (3′)

where ε > 0 is a real parameter.
The system (3′) coincides with the system (3) when ε = 1. We shall make use of a

substitution t = εt1 in the system (3′). Now we have the system

B(t)
dx

dt1
= A(t)x. (4)

For construction of a fundamental matrix of solutions for this system, we can use the
method from [2].

The equation

det(A(t)− λB(t)) = 0 (5)

has υ roots λ(t), ..., λυ(t) (υ ≤ n).
We assume that the matrices A(t), B(t) are symmetric for t ≥ t0. Then the roots of

the equation (5) are real [3]. We assume that the roots λi(t) are different when t ≤ t < ∞.
Hence when t ≥ t0 λi(t) 6= λj(t), i 6= j, i, j = 1, ..., υ, so we can construct proper
vectors µi(t) of the matrix A(t) with respect to the matrix B(t) in order for the scalar
product

(B(t)µi(t), µj(t)) =

{
1, i = j;
0, i 6= j, i, j = 1, ..., υ.

We put

x = Um(t, ε)y, Um(t, ε) =
m∑

s=0

εsUs(t),

where y is an n-measurable vector, and Us(t) are square (n× n)-matrices. We have

B(t)Um(t, ε)
dy

dt1
= (A(t)Um(t, ε)− εB(t)U ′

m(t, ε))y.

We construct the matrices Us(t) (s = 0, 1, ...,m) so as to get the matrix equality

A(t)Um(t, ε)− εB(t)U ′
m(t, ε) = B(t)Um(t, ε)(Λ(t, ε) + εm+1Cm(t, ε)), (6)

where Λ(t, ε) is a diagonal matrix,

Λm(t, ε) =
m∑

s=0

εsΛs(t).



DERIVATION OF ASYMPTOTICAL FORMULAS 465

We have to compare coefficients of ε0, ε1, ..., εm in the matrix equalities (6). We have a
matrix system of equations

A(t)U0(t)−B(t)U0(t)Λ0(t) = 0, (7)

A(t)Us(t)−B(t)Us(t)Λ0(t) = B(t)U ′
s−1(t) + B(t)

s∑
j=1

Us−j(t)Λj(t). (8)

Let Λ0(t) = diag {λ− 1(t), λ2(t), ..., λυ(t), ..., λn(t)}.
We write the matrix equation (7) in the vector form and designate columns of the

matrix U0(t) by u0i(t) (i = 1, 2, ..., n). We have

(A(t)− λj(t)B(t))u0i(t) = 0.

Then

uoi(t) = µi(t) (i = 1, 2, ..., n) and u0i(t) ≡ 0 (i = υ + 1, ..., n).

Let us consider (8) when s = 1 :

A(t)U1(t)−B(t)U1(t)Λ0(t) = B(t)U ′
0(t) + B(t)U0(t)Λ1(t);

or in the vector form

(A(t)− λi(t)B(t))u1i(t) = B(t)u
′
0i(t) + B(t)u0i(t)λ1i(t) ≡ g1i(t), i = 1, 2, ..., n. (9)

The equation (9) can be solved relatively u1i(t) iff, when the vector g1i(t) (i = 1, 2, ..., n)
is orthogonal to the vector which is a solution of the conjugated system corresponding
to the homogeneous system (9). A(t) and B(t) are symmetric, so the conjugated system
coincides with (9). So (9) has a solution iff, when

(g1i(t), µi(t)) = 0 (10)

for all t ≥ t0. For i = 1, ..., n we have

(B(t)u
′
0i(t), µi(t)) + (B(t)u0i(t)λ1i(t), µi(t)) = 0

or

λ1i(t) = −(B(t)u
′
oi(t), µi(t)), i = 1, 2, ..., n.

If i = υ + 1, ..., n, then (10) will change to an identity. So we can take λ1i(t) ≡ 0 (i =
υ + 1, ..., n). Thus substituting the obtained values of λ1i(t) (i = 1, ..., n) to the system
(9), we get the vector-column of the first part is orthogonal for all t ≥ t0 to a non–trivial
solution of the conjugate system. We look for this solution in such a form

u1i(t) =
υ∑

r=1

c
(1)
ri (t)µr(t), i = 1, ..., υ, (11)

where c
(1)
ri (t) is a function which must be defined for the vector (11) to satisfy the system

(9).
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Substituting (11) to system (9) and multiplying this result by the vector µj(t) (j =
1, ..., υ), we have

c
(1)
ji (t)(λj(t)− λi(t)) = (g1i(t), µj(t)), j = 1, ..., υ.

When i = j we have the identity c
(1)
jj (t) · 0 ≡ 0. Hence we can take any function c

(1)
jj (t).

We take c
(1)
jj (t) ≡ 0, for t ≥ t0. When i 6= j

c
(1)
ji (t) =

(g1i(t), µj(t))
λj(t)− λi(t)

.

Then

u1i(t) =
υ∑

r=1

(g1i(t), µj(t))
λj(t)− λi(t)

µr(t).

We assume that u1i(t) ≡ 0, i = υ + 1, ..., n.
Thus we defined the vectors u1i(t) (i = 1, 2, ..., n) (in the matrix U1(t)) and functions

λ1i(t) (i = 1, 2, ..., n) (in the matrix Λ1(t)). Using the method of mathematical induction,
we can find from equations (8) all the following matrices Us(t) and Λs(t) (s = 2, 3, ...,m).
So the system (4) has the form

B(t)Um(t, ε)
dy

dt1
= B(t)Um(t, ε)(Λm(t, ε) + εm+1Cm(t, ε))y. (12)

We can find the matrix Cm(t, ε) from (6)

εm+1B(t)Um(t, ε)Cm(t, ε) = A(t)Um(t, ε)− εB(t)U ′
m(t, ε)−B(t)Um(t, ε)Λm(t, ε).

We assume that

(E −B(t)Um(t, 1)(B(t)Um(t, 1))−)Dm(t, 1) = 0,

is a true equality for ε = 1 and t0 ≤ t < +∞, where (B(t)Um(t, 1))− is a half-inverse
matrix for the matrix B(t)Um(t, 1),

Dm(t, 1) = −B(t)

U ′
m(t, 1) +

m∑
r=1

m∑
j=r

Uj(t)Λm+r−j(t)

 .

Then

Cm(t, 1) = (B(t)Um(t, 1))−Dm(t, 1).

So, we have

B(t)Um(t, 1)
dy

dt
= B(t)Um(t, 1)(Λm(t, 1) + Cm(t, 1))y.

Let the system

dy

dt
= (Λm(t, 1) + Cm(t, 1))y, t ≥ t0 (13)
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be L-diagonalizable. We can understand that every solution of (13) is a solution of (12).
With the condition x = Um(t, 1)y we can find solutions of the system (3). Looking at the
conditions for matrices A(t), B(t), when t ≥ t0, we receive solutions of (3) in such a form

xj = µij(t) exp
t∫

t0

ωj(t)dt, i, j = 1, 2, ..., n,

where µij(t) are continuous functions on the interval [t0,∞).

Theorem 1. For the system (3) the following is true:

1) matrices A(t) and B(t) on the interval [t0,∞) have continuous derivatives;

2) A(t), B(t) are symmetric when t ≥ t0;

3) roots λi(t) (i = 1, 2, ..., υ) of the equation

det(A(t)− λB(t)) = 0,

when t ≥ t0, are simple;

4) when ε = 1 and t0 ≤ t < +∞ the equality

(E −B(t)Um(t, 1)(B(t)Um(t, 1))−)Dm(t, 1) = 0,

holds, where Um(t, 1), Dm(t, 1) are the matrices that we have found.

If the system (13) is a L-diagonal system, then n particular solutions of system (3)
have the form

xi = µij(t) exp
t∫

t0

ωj(t)dt, i, j = 1, 2, ..., n,

where µij(t) are continuous functions on the interval [t0,∞).
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