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Abstract

Distler-Kachru models which yield three generations of chiral fermions with gauge
group SO(10) are found. These models have mirror partners.

1 Introduction

Distler-Kachru models [1] are special cases of (0,2) Landau-Ginzburg orbifolds [2].

To

construct these models methods of algebraic geometry are being used. These models make
it possible to determine the number of generations of chiral fermions. For this purpose it

suffices to compute the Euler characteristic of the corresponding vector bundle.

In the present work we use a practical method of computing the Euler characteristic
suggested by Kawai and Mohri [3] for a large class of Distler-Kachru models. By means of
this method we provide some examples of models which yield three generations of chiral

fermions with the gauge group SO(10). These models have mirror partners [4].

2 A class of Distler-Kachru models

The Lagrangian for Distler-Kachru models [3] is given by
L =9 / do+dgt oio_ o — / 40+ dft ARAF 4 / 40+ F A" + / "t FAF,
where bosonic superfields ® and fermionic ones A* have the component expansions

D = GO +i0 0700, 1<i<N,
A = Ne— gtk 4000 N, 1l<k< M,

and superpotentials F}, are homogeneous polynomials of ®° satisfying
F(zr @t 2202 . x9NV o) = gloPr (@1, 92, .. V),

with w; and pg being rational numbers.

(1)
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Following [3], let us reformulate superconformal model (1) into the language of alge-
braic geometry. Suppose that X is a D = N — M + r dimensional complete intersection
defined by

X={pe WPy ! |Fisp) == Fulp) =0},

5o WIN

where F,14; is a polynomial of degree d; in the coordinates of the weighed projective
space VVPV]\V];1 Let E be the stable vector bundle of rank r over X defined by the

s WN T
following exact sequence

r+1
0—F— @O(na) —O(m) — 0,

a=1

where n, and m being positive integers. Here r = 3,4,5 yields the gauge group FEg,
S0O(10), SU(5). The vector bundle E and tangent bundle 7" of X must satisfy constraints
on their Chern classes

C1 (T) = 0,
C1 (E) = 0, (2)
o(T) = «(E),

which are the anomaly cancellaton conditions. Conditions (2) are tantamount to the
system of Diophantine equations

Zwi_zdj == O,
i J
Zna—m = 0, (3)
wa—Zd? = an—mQ.
i J

a
Bosonic superfields ®¢ can be interpreted as coordinates of X and fermionic ones A as
sections of F.
3 Orbifoldized elliptic genus

To compute the Euler characteristic x(E), it is convenient to start from an orbifoldized
elliptic genus [3]

—_

m—

Z(1,z) = (—1)r(atf+ab) 4 (1,2),

1
m

«a,B3=0

where

3 (7_7 Z) _ (_1)raﬁ€77ir(a27'+2az) 0 (T,Z +ar+ B),
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with

P(r, 2) = 0h(7, 2)/0(7)

¥1(7, z) is the Jacobi theta function, n(7) is the Dedekind eta function.
The modular and double quasi-periodicity properties of the orbifoldized elliptic genus
lead to the following relations

1
(Wiy...,wN) = E(Wl,...,WN),
1
(p1y---pM) = E(nl,...,nr+1,m—dl,...,m—dM_T_l).

An expansion

M—

Z(7,2) =M Ng" =y 2 [ (B) + O(q)]

connects the orbifoldized elliptic genus with the Hirzebruch genus

m—1
xy(B) =3 1,
a=0

which consists of contributions from twisted sectors

M

II (—1)[0"%] [yukq%} {avy}

(1 —yegqtorsd) (1 — y~vngh—lovd)

N {aw;}—-1 {awi}
[T (-~ [yeig™ |7 (1 = yeiglowd) (1 — ywigi—{owil)

=1 *

(4)
where y = > g = 2™ 1 = 1 — p, {x} = 2 — [2], [z] denotes the greatest integer less

than z, |, means that we extract only terms of the form ¢%y™'€" in the expansion (4).

4 SO(10) models

We now use the formula (4) to construct some three generation models with r =4, j =1,
D = 3. The Euler characteristic for these models is given by

X(E) = =xy(E)/y(y +1)(y = 1). (5)
Consider the models defined by the following quantum numbers
(Wi,...,w5;d1) = (n1,...,n5;m) :
(3,4,6,13,13;39),
(5,8,9,11,12;45), (6)
(10,12,13,15,25;75) .
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The system of equations (3) is satisfied identically by the data (6). The quantum numbers
(6) (and (7) below) was used by Klemm and Schimmrigk [5] to obtain the three generation
(2,2) superconformal models. But whereas in the (2,2) case the gauge group is Fg, in the
(0,2) case the gauge group is SO(10) for r = 4. In Tables 1-3 we display the contributions
from twisted sectors into the Hirzebruch genera of models (6).

Table 1
(wi;d1) = (ng;m) = (3,4,6,13,13; 39)
a Xy a Xy a R
0] 1+25y—25y° —y* | 13| =6y +6y° | 26 | —6y + 632
1 —y3 + gyt 14| —y?+9° |27 | =242+ 27
2 —y? 493 15 | =22 423 | 28 | —y2 +9°
3 —2y% + 2y° 16 | —y?2+9> [ 29| —y+9°?
4 -2+ 17| —y+y? |30 ] —2y% + 243
5 —y—y? 18 | —2y+2y | 31| —y2+43
6 —2y + 2y? 19| —y+92 [32] —y+i?
7 -y + 20 | —y*+y® | 33| =207 +2°
8 —y+y? 21 | =202 +2° | 34 | —y2 497
9 —2y + 2y? 22 | —y?+y® |35 ] —y+y?
10 -2+ 23 —y + 12 36 | —2y+ 292
11 —y + 12 24 | —2y+2¢y% | 37| —y+y?
12 —2y + 292 25| —y+y? |38 ~1+y
Xy(E) = =3y(1+y)(1—y)
Table 2
(wi;d1) = (ng;m) = (5,8,9,11,12;45)
a Xy al XY al XY
0 1+12y—12° —y* [ 15 | —y+¢% [ 30 | =2 +¢°
1 —y3 + oyt 16 | —y+vy? | 31| —y2+43
2 —y2 + 93 17 | =2 +42 | 32| —y+19?
3 —y + 32 18 0 33 | —y+9?
1 —y+y 19| —y*+¢° | 34| > +¢°
5 0 20 0 35 0
6 -y +y° 21 | —y® +¢° | 36 0
7 —y + y? 22 | —y+1y% | 37| =2 +4°
8 —y+y? 23 | —y*+y° |38 | =P+ 4P
9 0 24 | —y+y? | 39| —y+y?
10 0 25 0 40 0
11 —y +y? 26 | —y+9y? |41 | =2+ 43
12 —y? 43 27 0 42 | —y? 493
13 —y2 43 28 | —y+y? | 43 | —y+y?
14 —y + y? 29 | 2+ | 44| —1+y

Xy(E) = =3y(1 +y)(1 —y)
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Table 3
(wi;d1) = (ng;m) = (10,12,13,15,25; 75)

a x5 ol x” ol x”

0] 1+8 -8 —y* |25 =42 +4° |50 | —y+42
1 —y3 + 26 | —y®+y3 | 51 0

2 —y? 43 27 0 52 | —y? + 13
3 0 28 | —y+y? | 53| =2 +4°
4 —y+y? 29 | —y+y? | 54 0

5 0 30 | 2y —2y° | 55 0

6 0 31 | =2+ | 56 | —y+y?
7 -y +y3 32 | —y2+y? | 57 0

8 -y +y? 33 0 58 | =y +y?
9 0 34 | —y+y® | 59| —y+y?
10 0 35 0 60 | 2y — 243
11 —y+? 36 0 61 | —y% +y°
12 0 37| —y+1y? | 62| —y+y?
13 —y? 4+ 3 38 | —y2+y° | 63 0

14 —y+y? 39 0 64 | —y*+y°
15 2y — 23 40 0 65 0

16 -+ 41 | —y® +19° | 66 0

17 —y + 32 42 0 67 | —y+y?
18 0 43 | —y+19y? | 68| —y+y?
19 -y +y3 44 | —y+y® | 69 0
20 0 45 | 2y — 243 | 70 0
21 0 46 | —y2 492 | TL | =2+ 9P
22 —y + y? 47 | =2 4+ | T2 0
23 —y + y? 48 0 73| —y+y?
24 0 49 | —y+y? | 74| —1+y

Xy () = =3y(1+y)(1 —y)

From the results of Tables 1-3 and formula (5), it is clear that x(E) = 3. Hence, these
models yield three generations of chiral fermions with the SO(10) gauge group.

The models (6) have mirror partners defined by the quantum numbers

(W17"'1W5;d1) = (nlv"'7n5;m) :
(3,4,12,17,19;55),
(4,7,9,10,15; 45) , (7)
(4,4,5,5,7:25).
For these mirror partners y(E) = —3. The contributions from twisted sectors into the

Hirzebruch genera of mirror partners (7) are shown in Tables 4-6.
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Table 4
(wi;d1) = (ng;m) = (3,4,12,17,19; 55
a Xy ol ol
0 1+28y—28° —4* [ 19| =2+ |38 | =2 +4°
1 —y3 4yt 20 | —y?+943 |39 | =2 +4°
2 -y +y° 21 | =y +9° | 40 | —y+9°
3 —y? 43 22 | —y+y? |41 | —y+9?
4 —y? 43 23 | =2+ 43 | 42 | —y? + 43
5 —y? 43 24 | =2+ | 43 | =2+ 43
6 —y? + 3 25 | —y+y? | 44| —y?+yP
7 —y? 43 26 | —y+y? | 45 | —y+1?
8 —y+ y? 27 | —y+y? | 46 | —y? +33
9 —y +y? 28 | =2+ 43 | 47 | —y? + 4B
10 —y? 43 29 | —y? 4+ | 48| —y+1°
11 —y + y? 30 | =2 +9% | 49 | —y+9?
12 —y +y? 31 | —y+9y? | 50 | —y+9?
13 —y + 32 32| —y+y? | 51| —y+y?
14 —y? + 93 33 | —y2+9% | 52| —y+y?
15 —y? 43 34 | —y+y? | 53| —y+y?
16 —y + 9> 35| —y+y? | 54| —1+y
17 —y + y? 36 | —y+y?
18 —y + 9> 37 | —y? +4°
! Xy(E) =3y(L+y)(1 —y)
Table 5
(wi;d1) = (ng;m) = (4,7,9,10, 15;45)
a Xy ol Y al Y
0|1+ 15y— 15y3 — y4 15 0 30 0
1 —3 4yt 16 | —y2+43 | 31 | —y+19°
2 —y? 43 17| —y+9? | 32| —y+19°
3 0 18 | —y+y? | 33 0
4 —y + 32 19 | —y+y? | 34| =2 +4°
5 0 20 0 35 0
6 0 21 0 36 | —y?+9°
7 -+ 22 | —y+y? | 37| =% +9°
8 —y + y? 23 | =2+ | 38| —y+y?
9 —y+y? 24 0 39 0
10 0 25 0 40 0
11 —y+y? 26 | —y?2+y3 | 41 | —y?+98
12 0 27 | —y? +y? | 42 0
13 —y? 43 28 | —y2+43 | 43 | —y+y?
14 —y? + 93 29 | —y+y? | 44| —1+y

Xy(E) =3y(1+y)(1 —y)
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Table 6
(Wi; dl) - (na; m) = (4a 47 57 57 77 25)
a Xy al x” ol x
0] 1+19y—19y° —¢* | 9| —y+9%> 18] —y+4°
1 —y3 +yt 10 | —dy+4y®> | 19| —2+4°
2 —y? 493 11 —y? 43 20 | —4y? +4y3
3 —y + 32 12| —y+9? |21 —2+4°
4 —y+y? 13| —v*+y® 22| —y2+43
5 —4y + 4y? 4| —y+y> | 23] —y+9?
6 —y+y? 15 | —4y? +49° | 24 ~1+y
7 _y2 +y3 16 _y2 _|_y3
8 -y° +y° 17| —y+y?
! Xy(E) =3y(1+y)(1—y)
5 Remark

While this work was completed, there appeared on the hep-th net a paper of Kachru [6],
where some three generation (0,2) superconformal models with the gauge groups Eg and
SU(5) had been found.
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