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Abstract
In this contribution we review and summarize recent articles on a family of nonlinear
Schrödinger equations proposed by G.A. Goldin and one of us (HDD) [J. Phys. A.
27, 1994, 1771–1780], dealing with a gauge description of the family, a classification
of its Lie symmetries in terms of gauge invariants and the integrability of certain
sub-families indicated by their Lie symmetry, respectively.

1 Introduction

A classification of unitarily inequivalent representations of the kinematic algebra on Rn,
i.e., the semi-direct sum of the smooth vector-fields and the smooth functions,

S(Rn) = Vect(Rn)⊂+C∞(Rn) , (1)

defined by the commutator (Xj ∈ Vect(Rn), fj ∈ C∞(Rn))[
(X1, f1), (X2, f2)

]
S(Rn

)
=
(
[X1, X2]Vect(Rn

),LX1f2 − LX2f1

)
, (2)

led G.A. Goldin and one of us (HDD) to a family of nonlinear Schrödinger equations
[1, 2]. Their derivation fixed the imaginary part of i∂tψ/ψ and the real part was obtained
by some additional physical and mathematical assumptions. In terms of probability den-
sities ρ = ψψ̄ and currents ~J = 1

2i

(
ψ~∇ψ̄ − ψ̄ ~∇ψ

)
these equations, that have been called

Doebner-Goldin(DG)-equations [3], span an eight parameter family of homogeneous
nonlinear partial differential equations (PDEs),

i∂tψ/ = i
2∑
j=1

νjRj [ψ] +
5∑
j=1

µjRj [ψ] + µ0V , ν1 6= 0 , (3)

that includes the linear Schrödinger equation for ν1 = −h̄/2m, µ2 = −h̄/4m, µ3 =
h̄/2m, µ5 = h̄/8m, µ0 = 1/h̄, and ν2 = µ1 = µ4 = 0. Here V is a (real valued) potential
and Rj [ψ] denote real valued nonlinear functionals of ψ, complex homogeneous of degree
zero:

R1[ψ] :=
~∇ · ~J
ρ

, R2[ψ] :=
∆ρ
ρ
, R3[ψ] :=

~J 2

ρ2
,

R4[ψ] :=
~J · ~∇ρ
ρ2

, R5[ψ] :=
(~∇ρ)2

ρ2
.

(4)
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The family contains various nonlinear extensions of the Schrödinger equation put for-
ward by other authors, e.g., [4, 5, 6, 7, 8, 9, 20]. Derivation, properties, and interpretation
of the DG-equations have been studied to some extent; for recent results see the contri-
butions in [10].

For the purposes of this paper it is convenient to use the decomposition

ψ(~x, t) = exp (r(~x, t) + is(~x, t)) . (5)

This leads to a pair of coupled PDEs for the real valued functions r and s
∂tr = 2ν2∆r + ν1∆s+ 4ν2(~∇r)2 + 2ν1

~∇r · ~∇s
∂ts = −2µ2∆r − µ1∆s− 4(µ2 + µ5)(~∇r)2

−2(µ1 + µ4)~∇r · ~∇s− µ3(~∇s)2 − µ0V.

(6)

Note that due to the ambiguity of the phase function s in (5) the complex PDE (3) and
the two real PDEs (6) are not fully equivalent. However, any solution (r(~x, t), s(~x, t)) of
(6) yields a solution ψ(~x, t) = exp (r(~x, t) + is(~x, t)) of (3).

In this paper we review a gauge classification of the family put forward in [11] (section
2), the maximal Lie symmetries calculated in [12] (section 3), and finally the integration
of two sub-families according to [13] (section 4).

2 Gauge classification

It has been noticed [14, 15] that the sub-family

µ1 = 2ν2 , µ3 = −ν1 , µ4 = −2ν2 , µ5 = −1
2
µ2 , µ2 > 2

ν2
2

ν1
(7)

of (3) may be transformed into the linear Schrödinger equation

i∂tψ = ν ′1∆ψ + µ′0V (~x)ψ (8)

by a nonlinear transformation of the dependent complex variable

N(Λ,γ)(ψ) = ψ
1
2
(1+Λ+iγ)ψ̄

1
2
(1−Λ+iγ) = |ψ| ei(γ ln |ψ|+Λ argψ) , (9)

where Λ =

√
ν2
1

2ν1µ2 − ν2
2

, γ = 2ν2
ν1

Λ, and ν ′1 = ν1
Λ , µ′0 = Λµ0.

Obviously, these transformations leave the probability density ρ invariant. Since mea-
surements in non-relativistic quantum mechanics are basically measurements of positions
at different times (see, e.g., [16, p. 96]), these transformations are called nonlinear gauge
transformations [11].

Again the transformation (9) of ψ is not properly defined for non-integer Λ. However,
if Λ is integer, a generalized concept of ‘nonlinear’ observables (different from the one
proposed by S. Weinberg, [17]) consistent with the time evolution of the states ψ can
be developed rigorously establishing full equivalence between this DG-model and linear
quantum mechanics [18, 19].
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Nevertheless, using the decomposition (5) it may be defined for the system (6) as a
simple linear transformation of the functions r and s(

r′(~x, t)
s′(~x, t)

)
=

(
1 0
γ Λ

)(
r(~x, t)
s(~x, t)

)
. (10)

Thus, N(Λ,γ) is a realization of the affine group Aff (1). Furthermore, as is evident from
(6), the nonlinear gauge transformations N(Λ,γ) leave the whole family of DG-equations
invariant, changing the parameters (ν, µ) of the equations according to

ν ′1 =
ν1

Λ
, ν ′2 = − γ

2Λ
ν1 + ν2,

µ ′1 = − γ
Λ
ν1 + µ1 , µ ′2 =

γ2

2Λ
ν1 − γν2 −

γ

2
µ1 + Λµ2 , µ ′3 =

µ3

Λ
,

µ ′4 = − γ
Λ
µ3 + µ4 , µ ′5 =

γ2

4Λ
µ3 −

γ

2
µ4 + Λµ5 , µ ′0 = Λµ0 .

(11)

Since this action of the two-dimensional group Aff (1) on the eight-dimensional space of
parameters is regular for ν1 6= 0, we may choose six invariant parameters

ι1 = ν1µ2 − ν2µ1 , ι2 = µ1 − 2ν2 , ι3 = 1 + µ3/ν1 , ι4 = µ4 − µ1µ3/ν1 ,

ι5 = ν1(µ2 + 2µ5)− ν2(µ1 + 2µ4) + 2ν2
2µ3/ν1 , ι0 = ν1µ0 ,

(12)

and two group parameters ν1 and ν2.
Since DG-equations connected by the gauge transformation (9) are equivalent, we

choose the group parameters to be

ν1 = −1, ν2 = 0 , (13)

and we will use the gauge invariants to characterize the various sub-families of DG-
equations.

3 Lie symmetries

Classifying the Lie symmetries of the free (V ≡ 0) DG-equations, we are led to distin-
guish nine different sub-families with different restrictions of the gauge invariants ι. This
sub-family structure and the corresponding symmetry algebras are illustrated in Fig.1.
Symmetry algebras with an upper index are infinite-dimensional, the others finite dimen-
sional.

The finite-dimensional Lie symmetry algebras are spanned in the following way

sym0(n) = 〈H,D,Ljk, Pj , E,R〉 , (14)
sym1(n) = 〈H,D,Ljk, Pj , E,R,C,Bj〉 , (15)
sym2(n) = 〈H,D,Ljk, Pj , E,R,A〉 , (16)
sym3(n) = 〈H,D,Ljk, Pj , E,R,C,Bj , A〉 , (17)
sym4(n) = 〈H,D,Ljk, Pj , E,R, F 〉 , (18)
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symb
1(n)

ι2 = ι3 = 0,
ι4 = ι5 = 0,
ι1 < 0

symc
1(n)

ι2 = ι3 = 0,
ι4 = ι5 = 0,
ι1 > 0

sym3(n)
ι2 = ι3 = 0,
ι4 = ι5 = 0,
ι1 = 0

syma
2(n)

ι1 = ι2 = 0,
ι4 = ι5 = 0,
ι3 = −1

symb
1(n)

ι1 = ι5 = 0,
ι2 = ι4,
ι3 = −1

sym1(n)
ι3 = ι4 = 0

sym2(n)
ι1 = ι2 = ι4 = ι5 = 0

sym4(n)

ι1 = ι22(ι23−1)

8ι23
, ι4 = ι2(1−ι3)

2 ,

ι5 = ι1ι3, ι3 6= 0 6= ι2

sym0(n)
—
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Figure 1: Lie symmetries of the DG-equations. Sub-families are characterized by gauge invariants
and arrows indicate the subfamily structure.

with the following generators:

H = ∂t , D =
n∑
j=1

xj∂xj + 2t∂t − n
2 ∂r −

nι2
2 ∂s , Pj = ∂xj ,

Ljk = xj∂xk − xk∂xj , Pj = ∂xj , E = 1
2∂s , R = ∂r ,

C =
n∑
j=1

xjt∂xj + t2∂t − n
2 t∂r +

(
1
4 ~x

2 − nι2
2 t

)
∂s , Bj = t∂xj + 1

2xj∂s ,

A = −t∂t + s∂s , F = e
(ι3−1)r− 2ι3

ι2
s
(
∂r −

ι2(1 + ι3)
2ι3 ∂s

)
.

(19)

The generators of sym3(n) ⊃ symj(n), j = 0, 1, 2 obey the following nontrivial commuta-
tion relations (j, k, l,m = 1, . . . , n):

[D,H] = −2H , [H,C] = D , [D,C] = 2C , [H,Bj ] = Pj ,

[D,Pj ] = −Pj , [D,Bj ] = Bj , [C,Pj ] = −Bj , [Pj , Bk] = δjkE ,

[A,H] = H , [A,C] = −C , [A,E] = −E , [A,Bj ] = −Bj ,
[Ljk, Pl] = δklPj − δjlPk , [Ljk, Bl] = δklBj − δjlBk ,

[Ljk, Llm] = δklLjm + δjmLkl − δjlLkm − δkmLjl ,

(20)
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and the exceptional generator F of sym4(n) yields

[F,R] = (1− ι3)F , [F,R] = − ι3
ι2
F . (21)

In particular, the fundamental Lie symmetry algebra sym0(n) of (3), i.e., the symmetry
of all equations, consists of the Euclidean algebra e(n), dilations and time translations
(spanning an affine sub-algebra aff (1)) and complex homogeneity (t(2)),

sym0(n) =
(
aff (1)⊂+e(n)

)
⊕ t(2) , (22)

and the Lie algebra sym1(n) is a direct sum of the centrally extended Schrödinger
algebra sche(n) and a one–dimensional algebra t(1) (real homogeneity),

sym1(n) = sche(n)⊕ t(1) . (23)

These particular DG-equations thus fit into the classes of Schrödinger-invariant nonlin-
ear evolution equations determined in [20, 21, 22, 23].

Furthermore we have three different infinite-dimensional Lie algebras, the additional
infinite dimensional parts of which we denote by a∞, b∞, c∞, respectively.

The Lie algebra a∞ is spanned by the generators

Yf = f(ι2r − s)∂r , (24)

where f = f(z) is a real valued function on R. Their commutators are[
Yf1 , Yf2

]
= ι2Y(f1f ′2−f2f

′
1) . (25)

Thus, a∞ is isomorphic either to the commutative algebra of smooth functions on R or to
the Lie algebra of vector fields on the real line,

a∞ '
{
C∞(R) for ι2 = 0,
Vect(R) for ι2 6= 0.

(26)

In the commutative case, these additional generators add to the generators of sym2(n),
whereas in the non-commutative case they add to the fundamental symmetry algebra
sym0(n) to yield the infinite-dimensional Lie symmetry algebras

syma
0(n) = 〈H,D,Ljk, Pj , E,R, Yf 〉 , (27)

syma
2(n) = 〈H,D,Ljk, Pj , E,R,A, Yf 〉 . (28)

Note that sym4(n) is a sub-algebra of syma
0(n). The nontrivial commutation relations of

Yf with the generators of sym0(n) and sym2(n) are[
Yf , R

]
= −µ1Yf ′ ,

[
Yf , E

]
=

1
2
Yf ′ ,

[
Yf , A

]
= Yzf ′ . (29)

The second infinite-dimensional Lie algebra b∞ is spanned by the generators

ZΦ± = e−r
(

Φ+(~x, t)e
1√
−2ι1

s
(

1√
−2ι1

∂r − ∂s

)
+

Φ−(~x, t)e
− 1√

−2ι1
s
(

1√
−2ι1

∂r + ∂s

))
,

(30)
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where Φ+ (Φ−) is a smooth solution of the forward (backward) heat equation with a
diffusion coefficient

√
−2ι1:

∂tΦ± ±
√
−2ι1 ∆Φ± = 0 . (31)

The Lie algebra b∞ = {ZΦ± |Φ± solutions of (31)} is commutative, and together with the
elements of sym1(n) it spans the infinite-dimensional Lie symmetry algebra

symb
1(n) = 〈H,D,Ljk, Pj , E,R,C,Bj , ZΦ±〉 . (32)

By integration of the generators ZΦ± we find a transformation of the subfamily (ι2 = ι3 =
ι4 = ι5 = 0, ι1 < 0) to the above pair of forward and backward heat equations, i.e., if Φ±
is a solution of (31), then

ψ(~x, t) =
√

Φ+(~x, t)Φ−(~x, t) exp
(
i

√
− ι1

2
ln
(

Φ−
Φ+

))
, (33)

is a solution of (3), a relation given for a particular subclass of (3) already in [15].
Finally, there is a third infinite-dimensional Lie algebra involved, spanned by the

generators

ZΨ = e−r|Ψ(~x, t)|
(

sin
(

1√
2ι1

s− arg Ψ(~x, t)
)
∂r+

√
2ι1 cos

(
1√
2ι1

s− arg Ψ(~x, t)
)
∂s

)
,

(34)

where Ψ is a solution of the free linear Schrödinger equation

i∂tΨ = −
√

2ι1 ∆Ψ . (35)

Again the Lie algebra c∞ = {ZΨ|Ψ solution of (35)} is commutative, and generates
together with the elements of sym1(n) the infinite-dimensional Lie symmetry algebra

symc
1(n) = 〈H,D,Ljk, Pj , E,R,C,Bj , ZΨ〉 . (36)

Integrating the vector-field ZΨ, it turns out that this particular symmetry corresponds to
the nonlinear gauge transformation N(

√
2ι1,0)!

4 Integrable sub-families

We have noted in the previous section that two of the sub-families of (3) with infinite-
dimensional symmetries are linearizable by a local transformation of the dependent vari-
ables for any space dimension. Therefore, it seems worthwhile to examine the integra-
bility of the sub-families with the other infinite dimensional symmetry algebras syma

0(1)
and syma

2(1). Indeed, it turns out that in one space dimension an integration of the
sub-families

sym2(1) : ι2 = ι3 = ι4 = ι5 = 0 , (37)
syma

0(1) : ι1 = ι5 = 0, ι3 = −1, ι2 = ι4 6= 0 (38)

can be carried out by solving a set of implicit equations and quadratures [13].
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Integrating the first sub-family sym2(1), we have to distinguish the case ι3 = 0 ad-
mitting the larger symmetry algebra sym3(1). In both cases we obtain either travelling
wave solutions or solutions involving the (local) solution of the implicit equation for an
arbitrary smooth function f

2(1− ι3)tz − x+ f ′(z) = 0 . (39)

The general solution of the particular case ι3 = 0 of the sub-family (37) reads

ψ(x, t) = g(x− 2C1t)ei(C1x−C2
1 t+C2) , (40)

ψ(x, t) =
(
f ′′(z) + 2t

)− 1
2 g(z)e−i(tz

2−xz+f(z)) , (41)

whereas the general solution for ι3 6= 0 has the form

ψ(x, t) = g(x− 2C1t)ei(C1x−µ3C2
1 t+C2) , (42)

ψ(x, t) = z
− 1

2ι3 g

(
−2ι3tz

ι3−1

ι3 +
∫ z

ζ
− 1

ι3 f ′′(ζ)dζ
)
e−i((1−ι3)tz2−xz+f(z)) . (43)

In both cases f, g are arbitrary sufficiently smooth real-valued functions on R, and Cj
arbitrary real parameters.

The general solution of the second sub-family (38) involves an arbitrary solution of the
heat equation

ut + ι2uxx = 0 , (44)

and an arbitrary smooth real-valued function f on R:

ψ(x, t) = (u(x, t))
1
2 f

(∫ x

0
u(ξ, t)dξ − µ1

∫ t

0
ux(0, τ)dτ

)
e

iµ1
2

lnu(x,t) . (45)

5 Conclusions

We have summarized the results of [11, 12, 13] on the DG-equation (3). First we have
seen that the family (3) admits a nonlinear gauge description as it is invariant under the
nonlinear gauge transformation (9). Using this fact, we reduced the number of parameters
of the family by two and proposed a set of parameters ι to describe the gauge invariant
sub-families.

Since the nonlinear gauge transformations are local transformations, we were able to use
a particular gauge to determine the Lie symmetries of the free DG-equations. Besides the
linearization of a certain sub-family by a nonlinear gauge transformation, this examination
led to a linearization of another sub-family to a forward/backward heat equation. Using
Lie symmetries as an indicator for integrability of PDEs, we were able to integrate free
DG-equations in one space dimension by quadratures and implicit equations. But as the
implicit equation can in general only be solved locally for a certain space-time region, the
solutions obtained in this way are only local solutions in general. On the other hand, the
solutions of the sub-families indicate an infinite-dimensional generalized symmetry of the
DG-equation. For instance, the infinite-dimensional Lie symmetry of the heat equation
(44) induces an infinite-dimensional nonlocal symmetry of the DG-equation (38).
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Though we summarized the methods of integration only for the free DG-equations,
they can be extended to DG-equations with potentials V . Labelling sub-families by their
symmetries, the DG-equations symb

1(n) and symc
1(n) can be integrated in arbitrary space

dimension n, and sym2(1) and syma
0(1) in one space dimension n = 1. Thus, at least in

one space dimension we can solve the bottom line of sub-families in Fig.1. It remains in
a first step to extend these methods to arbitrary space dimensions n and to search for an
integration of the other, larger sub-families.
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