
Nonlinear Mathematical Physics 1996, V.3, N 3–4, 260–265.

Gauge symmetry and the generalization

of Hirota’s bilinear method

Jarmo HIETARINTA

Department of Physics
FIN-20014 Turku University, FINLAND
e-mail: hietarin@utu.fi

Abstract

One of the most powerful methods for finding and solving integrable nonlinear partial
differential equations is Hirota’s bilinear method. The idea behind it is to make first
a nonlinear change in the dependent variables after which multisoliton solutions of
integrable systems can be expressed as polynomials of exponentials eηi where the η′

is
are linear in the independent variables. Among all quadratic expressions homogeneous
in the derivatives, Hirota’s bilinear form can be isolated by a gauge symmetry: it is
the only one that is invariant under fα → eθfα where θ is linear in the variables. This
suggest a generalization to multilinear equations using the same gauge symmetry.
The set of gauge invariant multilinear differential equations can then be studied and
integrable equations identified e.g. by the Painlevé method. Some interesting new
equations have been found in this way.

1 Introduction

Since the late 1960’s solitons have been studied intensively, and the related theory has by
now been firmly established. Solitons (which by definition are localized and stable travel-
ling-wave solutions, which interact elastically) have also been seen experimentally, from
kilometers wide internal waves in oceans to very short pulses in optical fibers.

Solitons appear only in integrable nonlinear PDE’s and since the conditions for inte-
grability are rather demanding, integrable systems are rare (which in no way limits their
influence [1]). One important problem is, therefore, the search for new integrable systems.
This can be done in many ways: take any property that is common to integrable systems
and try to generalize it while keeping the good implications. Some of the useful properties
of soliton systems are:

• There are infinite number of conserved quantities.
• The nonlinear evolution equation arises from a consistence condition of two linear

equations (Lax pair).
• One can construct closed form multisoliton solutions.
• One can solve the initial value problem (inverse scattering transform).
There seems to be some kind of symmetry property behind each of these properties.

In this talk we would like to point out that there is also a gauge symmetry behind the
multisoliton property, this becomes clear when one uses Hirota’s bilinear method in con-
structing the solutions. Futhermore, it is possible to make a natural generalization of
Hirota’s method while keeping this symmetry [2].
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In the next section we will give a short description of Hirota’s bilinear method and then
introduce the gauge symmetry. Next the symmetry is generalized to multilinear systems.
A class of such multilinear systems has been searched for integrable equations, using the
Painlevé method, and we recall some results here [3].

2 Hirota’s bilinear method

We will first briefly discuss Hirota’s very effective method of constructing multisoliton
solutions to integrable equations (for further details, see e.g. [4]).

The first step is a transformation to Hirota’s “bilinear form”. As an example let us
consider the Korteweg – de Vries (KdV) equation

uxxx + 6uux + ut = 0. (1)

Let us introduce the dependent variable transformation

u = 2∂2
x log F, (2)

and then one can write (1) in the following bilinear form (after one integration):

FxxxxF − 4FxxxFx + 3F 2
xx + FxtF − FxFt = 0. (3)

This does not look simpler than (1) but one can write it in a condensed form using the
Hirota D operator:

(D4
x + DxDt)F ·F = 0, (4)

here Dx ≡ ∂x1 − ∂x2 acts on a pair of functions (the ‘dot product’) antisymmetrically:

Dn
xf ·g = (∂x1 − ∂x2)

nf(x1)g(x2)|x2=x1=x. (5)

The minus sign here is crucial.
Clearly the bilinear form of the KdV-equation belongs to the class

P (Dx, Dy, ...)F ·F = 0, P (0) = 0. (6)

For this class of equations multisoliton solutions are indeed simple in terms of F , as
opposed to u. It is easy to see, that due to the antisymmetry in (5) F1 = 1+ eη (η = p ·x)
is a solution of (6), if just the parameters p satisfy a dispersion relation P (p) = 0. F1 is
the one-soliton solution (1SS) and substitution to (2) yields the standard result for u.

The two-soliton solution (2SS) is a kind of linear superposition of two 1SS’s (ηi = pi ·x):

F2 = 1 + eη1 + eη2 + A12e
η1+η2 . (7)

The “phase factor” A12 is given by −P (p1 − p2)/P (p1 + p2).
The above works for any polynomial P . However, a three soliton solution can be

constructed only for integrable equations. The only natural 3SS generalization, having
the correct 2SS limits, is

F = 1 + eη1 + eη2 + eη3 +
A12e

η1+η2 + A13e
η1+η3 + A23e

η2+η3 + A12A13A23e
η1+η2+η3 . (8)
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However, this is a solution of (6) only if certain functional relations involving P are satis-
fied. This provides a method for searching for new candidates for integrability: find those
P ’s that solve the resulting equations. This method has turned out to be quite efficient,
especially since the form of P is not restricted in any way at the beginning. The same
idea works for some other types of bilinear equations as well (modified KdV, sine–Gordon,
nonlinear Schrödinger). [For some results, see [5].]

3 Gauge invariance in Hirota’s method

3.1 Bilinear

First notice that the relation of the ‘physical’ variable u to the Hirota’s function F given
in (2) is such that u is invariant under F → eq·xF . This gauge invariance is also evident in
the soliton solutions, an N-soliton solution is form invariant under F → F exp(−

∑
i pi ·x).

In fact, one can define Hirota’s bilinear form through the requirement of gauge invari-
ance: if we take any expression quadratic in the dependent variables and homogeneous in
the derivatives

An(f, g) :=
n∑

i=0

ci

(
∂i

x f
) (

∂n−i
x g

)
, (9)

then it turns out that An is gauge invariant, i.e.,

An(eθf, eθg) = e2θAn(f, g), where θ = qx, (10)

if and only if

ci = (−1)i

(
N

i

)
c0, (11)

so that in the end An can be written as

An(f, g) = c0 Dn
xf ·g. (12)

3.2 From bilinear to multilinear

The above observation can be used as a guideline in generalizing Hirota’s method: let us
define multilinear operators also by a gauge condition.

For an expression cubic in dependent variables and homogeneous (of degree N) in the
x-derivatives

BN (f, g, h) :=
∑

k+l+m=N

cklm(∂k
xf)(∂l

xg)(∂m
x h), (13)

the gauge invariance requirement is∑
k+l+m=N

cklm(∂k
xeηf)(∂l

xeηg)(∂m
x eηh) = e3η

∑
k+l+m=N

cklm(∂k
xf)(∂l

xg)(∂m
x h). (14)

where η = xp+ η0. This again introduces conditions on cklm and one finds [2] that a basis
for such gauge invariant operators can given by the N + 1 combinations: Dn

12D
N−n
13 for

n = 0, . . . , N where, for example,

D12f ·g ·h = (∂x1 − ∂x2)f(x1)g(x2)h(x3)|xi=x.
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A more symmetric basis is given by Tn(T ∗)N−n, where

T = ∂1 + j∂2 + j2∂3 , T ∗ = ∂1 + j2∂2 + j∂3, j = e2iπ/3. (15)

The above generalizes to any order of multilinearity by introducing the set of n(n−1)/2
operators Dij (n−1 of them independent) acting on n-tuple dot-products Dijf1·f2· . . . ·fn,
or the ‘symmetric’ operators:

Mm
n =

n−1∑
k=0

e2πikm/n∂k+1, for 0 < m < n. (16)

For example, D = M1
2 , T = M1

3 , T ∗ = M2
3 .

4 Searching for integrable trilinear equations

Once a class of interesting equations has been defined, one can search for integrable equa-
tion within that class. For multilinear equations his can be done either by asking for
multisoliton solution or by Painlevé analysis. The latter was done for trilinear equations
of type P (T, T ∗)F ·F ·F = 0 in [2, 3], here we will just mention some of the most interesting
equations found in that work.

The first new equation passing the Painlevé test was found at degree 5 in the T ’s:

(T 4
xT ∗

y + 8T 3
xTyT

∗
x + 9T 3

y + 9T 2
xTz)F ·F ·F = 0. (17)

Putting F = eg we obtain its nonlinear version

gxxxxy + 8gxxygxx + 4gxygxxx + gyyy + gxxz = 0. (18)

This carries some resemblance with the KP equation. In this case nontrivial three soliton
solutions have also been shown to exist.

The fifth-order equation in the Lax hierarchy was found at degree 6:

(20T 3
xT ∗3

x + 7T 6
x + αT 2

xT ∗2
x + 27T ∗

xTy)F ·F ·F = 0, (19)

or in nonlinear form (u = 2∂2
x log F , derivate once):

u5x + 10uuxxx + 20uxuxx + 30u2ux + 27α(uxxx + 6uux) + uy = 0. (20)

Thus the Lax-5 equation does not have a simple bilinear form like KdV but a trilinear
one.

New equations passing the Painlevé test were found also at degrees 8 and 10:

(4T 7
xT ∗

x + 5T 4
xT ∗4

x + α(20T 3
xT ∗3

x + 7T 6
x ) + 9βT 2

xT ∗
xT ∗

y + 9
2αβTxT ∗

y )F ·F ·F = 0, (21)

whose nonlinear form is (u = 6∂x log F )

u7x + 6u5xux + 10u4xuxx + 5u2
xxx + 10uxxxu2

x + 10u2
xxux + 5

3u4
x +

α(3u5x + 10uxxxux + 5u2
xx + 10

3 u3
x) + β(uxxy + uxuy) + 1

2αβuy = 0, (22)

and

(5T 8
xT ∗2

x + 4T 5
xT ∗5

x + α(4T 7
xT ∗

x + 5T 4
xT ∗4

x ) + β(20T 3
xT ∗2

x T ∗
y + 7T 5

xTy)+

6αβT 2
xT ∗

xT ∗
y + 3

2β2TyT
∗
y )F ·F ·F = 0 (23)
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with the nonlinear form (g = 6 log F )

g10x + 10g8xg2x + 20g7xg3x + 30g6x(g4x + g2
2x) + 25g5x(g5x + 4g3xg2x) +

50g2
4xg2x + 50g4xg2

3x + 100
3 g4xg3

2x + 50g2
3xg2

2x + 10
3 g5

2x +
α(g8x + 6g6xg2x + 10g5xg3x + 5g2

4x + 10g4xg2
2x + 10g2

3xg2x + 5
3g4

2x) +
β(3g5xy + 5g3xgxxy + 10

3 (g4xgxy + g2
xxgxy + 2gxxgxxxy)) +

2
3αβ(gxxxy + gxxgxy) + 1

6β2gyy = 0. (24)

5 Equations with a missing leading term

The nonlinear equation corresponding to (6) is obtained by the substitution F = eg and
leads to

P (D)eg ·eg = e2g[(P (∂) + P (−∂))g + nonlinear terms]. (25)

Since the odd parts of P do not contribute (even for the nonlinear terms) we see that in
the bilinear case the leading (linear) part is given by the polynomial P itself, which also
defines the dispersion relation, as was shown before.

With trilinear operators the situation is more complicated. The observation above,
that only the even part of P contributes in the bilinear case, is now replaced by the
following

TnT ∗mF ·F ·F = 0, unless n + 2m = 0 (mod 3).

For the leading part of the nonlinear equation corresponding to a trilinear equation this
implies that if n + 2m = 0 (mod 3)

TnT ∗meg ·eg ·eg = 3e3g[∂n+m + nonlinear terms]. (26)

Thus the leading part is only sensitive to n + m, but the nonlinear part depends on both
n and m.

The gives to the novel possibility that the leading term may now vanish even when
the nonlinear terms do not. The simplest one dimensional example of this is obtained at
degree 6 when n = 6,m = 0 and n = 3,m = 3 both satisfy the condition n + 2m = 0
(mod 3). Thus the equation

(T 6
x − T 3

xT ∗
x

3)F ·F ·F = 0,

which in determinant form reads [6]∣∣∣∣∣∣
F ′′′′ F ′′′ F ′′

F ′′′ F ′′ F ′

F ′′ F ′ F

∣∣∣∣∣∣ = 0.

is of degree six, but there is no sixth order leading term. Another examples of this type is
given by the second order PDE

(TxT ∗
y − Ty T ∗

x )F ·G·H = 0,
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or in determinant form ∣∣∣∣∣∣
F Fx Fy

G Gx Gy

H Hx Hy

∣∣∣∣∣∣ = 0.

which only contains first order terms.
The Monge-Ampère equation w2

xy − wxxwyy = 0 belongs also to this class, it is fourth
order but has only second order derivatives. It can be written as (with F = ew)

(TxT ∗
xTy T ∗

y − T 2
xT ∗2

y )F ·F ·F = 0,

or in determinant form, ∣∣∣∣∣∣
Fyy Fy Fxy

Fy F Fx

Fxy Fx Fxx

∣∣∣∣∣∣ = 0.

6 Conclusion

We have here discussed an extension of Hirota’s bilinear formalism leading to any degree
of multilinearity. The main guideline in this generalization has been gauge-invariance: the
original nonlinear equation should be transformed into a form that is invariant under a
gauge transformation fi → ea·xfi.

The only new class of equations that has been studied in detail is P (T, T ∗)F ·F ·F = 0.
A search of integrable equations in this class (and with nonvanishing leading term) has
been made using the Painlevé test and new integrable equations have been discovered.

Many things that have been done for bilinear equations still remain to be done for
trilinear (and higher multilinear) ones, for example classification of integrable multicom-
ponent equations (i.e. those that contain several dependent variables F,G, . . .), and the
study of multisoliton solutions.

The interesting new class of equations with missing leading term is still completely
unexplored territory from the multilinear point of view. Another interesting direction is
to apply multilinear techniques to difference equations.

References

[1] Calogero F., Why are certain nonlinear PDE’s both widely applicable and integrable? in: What is
integrability? (V.E. Zakharov,ed), Springer, 1991, 1–62.

[2] Grammaticos B., Ramani A. and Hietarinta J., Phys. Lett. A, 1994, V.190, 65–70.

[3] Hietarinta J., Grammaticos B. and Ramani A., Integrable Trilinear PDE’s, in: Nonlinear Evolution
Equations & Dynamical Systems, NEEDS ’94”, eds. V.G. Makhankov, A.R. Bishop and D.D. Holm,
(World Scientific, 1995), 54–63.

[4] Hietarinta J., Hirota’s bilinear method and partial integrability, in: Partially Integrable Equations in
Physics, eds. R. Conte and N. Boccara, (Kluwer, 1990), 459–478.

[5] Hietarinta J., J. Math. Phys., 1987, V.28, 1732, 2094, 2586; ibid 1988, V.29, 628.

[6] Matsukidaira J., Satsuma J., Strampp W., Phys. Lett. A, 1990, V.147, 467.


