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Symmetries of the Classical Integrable Systems

and 2-Dimensional Quantum Gravity: a ‘Map’

R.K. BULLOUGH and P.J. CAUDREY
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Abstract

We draw attention to the connections recently established by others between the
classical integrable KdV and KP hierarchies in 1+1 and 2+1 dimensions respectively
and the matrix models which relate to the partition functions of 2-dimensional (1 + 1
dimensional) quantum gravity. The symmetries of the classical KP hierarchy in 2 + 1
dimensions are fundamental to this connection.

1 Introduction and background: the Symposium
“KdV ’95” and the ‘map’ Solitons

Circumstances have prevented either of the two authors from taking part in this meeting
‘Symmetries in nonlinear mathematical physics’ and we send this short contribution for
the Vol.4 of the Proceedings in the form of a ‘map’, the Fig.1, called ‘SOLITONS’. This
map has already appeared in different forms in a number of different places (see the Ref.
[53] listed in §4) and it first appeared in its present, and so far ‘final’, form in [7,8] (see
Refs. [7, 8] listed in §4). It has subsequently appeared in this ‘final’ form in Ref. [53] and
then in our contribution [87] to the Proceedings of the International Symposium held in
Amsterdam, April 23–26, 1995, called KdV ’95. The meeting KdV ’95 commemorated the
centennial of the publication of the famous paper [1] by D.J. Korteweg and G. de Vries of
1895.

The Fig.1 as it is here reproduced now displays the captions as displayed in [87], and
the reference numbers there refer to the reference list taken from [87] and attached here
again as the §4 which follows below. In the meantime a small change is also included:
‘Optical solitons’ is added to the EXPERIMENTS ‘box’ at the extreme right of the Fig.1
and this ‘final’ form, reproduced as the Fig.1 again now, was first published in [88]. Then
again a connecting arrow between the ‘box’ third column from the right called ‘Quantum
Integrable Models e.g. s-G, MTM, NLS’, where NLS is the nonlinear Schrödinger equation,
is (for NLS) directed at this ‘optical solitons’, and the symbol NLS in this box is also new
compared with Ref. [87] (which reads ‘e.g. s-G, MTM’ only).

Fig.1
Overview of generalised ‘Soliton’ theory as of August 1991 taken from Refs. [7, 8].
A hard arrow indicates minimal connection (at least) between the boxes is already

established and most hard arrows are actual mappings. Dashed arrows indicate expectation by the
authors that some such minimal connection can be achieved or stronger. Note how p-reduction of
the KP equations reaches the string equation for 2D-Quantum Gravity coupled to (p, q) conformal
matter [72, 81]. Pure quantum gravity is p = 2 the case considered by Migdal [50]. =⇒
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We think ‘optical solitons’ as such was first used in [86] so that (see [86]) the connecting
arrow is also from s-G (the sine-Gordon equation) to ‘optical solitons’. But s-G also
connects to ‘High Tc superconductivity’ as well as to the ferromagnetic chain CsNiF3.
Finally MTM means, of course, the quantum massive Thirring model [53] and this is
fermi-bose equivalent [53] to the quantum s-G model.

2 The symmetries of the ‘map’

The relevance of the Fig.1 to the present meeting is, apart from the well known relevance of
symmetries to integrable systems and solitons anyway (completely integrable Hamiltonian
systems necessarily have such symmetries), precisely the set of connections marked in the
figure in the fourth column from the right between the three vertically connected ‘boxes’
there. The contents of each of these three ‘boxes’ read respectively

Symmetries of KP-I and KP-II Algebra

[Km,Kn] = 0
[Km, τn] = 1

3(m + 1)Km+n−2

[τm, τn] = 1
3(m− n)τm+n−2

, (1)

———————————————————

Weyl1+∞ Algebra

[τn,m, τn′,m′ ] =
∑

�=min(n,n′)
a�τ�,m+m′ , (2)

———————————————————–
and

2D Quantum Gravity
Partition function is a (3)
τ − function of p-reduced KP .

A representation of the algebra of the symmetries of KP-I and KP-II displayed in the
expressions (1) is derived in [83], and the Kn are the isospectral symmetries of KP: ‘KP’
means the Kadomtsev–Petviashvili equations and these are quoted on the ‘map’, as in
[83], as

(ut + 6uux + uxxx)x = ±uyy (4)

in the ‘box’ directly above the ‘box’ (1). The τn in the expressions (1) are then directly
related [83] to certain non-isospectral symmetries: the scaling 1

3 , and the form of the
Virasoro algebra [70, 87] [τm, τn] = 1

3(m − n)τn+m−2 arise from the details of the scaling
of KP as adopted in (4) and [83] and the details of the consequent symmetries Kn, τn as
they are treated in [83].

Note that all of the symmetries Kn and τn in 2 + 1 dimensions are of the general Lie–
Bäcklund type – in some contrast with e.g. the Lie symmetries studied in depth in Ref.
[89] at this meeting. Consequently in the context of 2-dimensional quantum gravity (§3
next and the expressions (3) above) one can introduce the so-called ”p-reduced” KP-I flows
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[72, 81] which are constrained [7] by Douglas’s ‘string equation’ so that the consequent
infinite set of constraints satisfies the Weyl W∞ algebra marked in Fig.1 (in the ‘box’ with
contents (2)) in the form

[
τn,m, τn′,m′

]
=

n+n′∑
�=min(n,n′)

a�τ�,m+m′ . (5)

In eqns. (5) the non-isospectral symmetries τm can be identified as the τ0,m. With
n ≥ −1 and n + m ≥ −1 the W∞ algebra is isomorphic to that generated by τn,m =
xn+m+1dn+1/dxn+1 and it excludes the commuting isospectral flows identified in expres-
sions (1) as the symmetries Km. Thus in the same context of quantum gravity [81] the
W∞ algebra has been extended to the W1+∞ algebra through generalised flows

∂τ/∂t−1,� = C−1,�τ, ∂τ/∂t∗n,m = Cn,mτ = 0, n ≥ 0. (6)

The t−1,� are times t� of the KP hierarchy and the t∗n,m are defined in [81]. The Cn,m so
introduced now satisfy the W1+∞ algebra

[C−1,n, C−1,m] = 0, [C−1,n, C0,m] = nC−1,n+m, [C0,n, C0,m] = (n−m)C0,n+m,

[C0,n, C1,m] = (m− 2n)C1,n+m + n(n + 1)C0,n+m, ... (7)

(namely the eqns. (8) of [81]). In this form the symmetries Kn of Ref. [83] can be identified
as the C−1,n, and the flows on the left of eqn. (6) are the KP flows; the symmetries τn are
the C0,n and the τn ≡ C0,n satisfy the Virasoro algebra in proper form – with however (see
§3) the central charge of this algebra set to zero. Note that the C0,m enter as constraints
in the generalised flows appearing in the equations to the right in (6) and there set to zero.

It is the Ref. [7] by one of us which gives the brief connection to ‘2D Quantum
Gravity’ as this is marked on the Fig.1 namely in the connected ‘boxes’ with contents
the expressions (2) and (3) above. We also draw attention to Ref. [82]. However, Refs.
[7, 81-83] are in themselves scarcely sufficient to take any but the most expert readers
from the symmetries of KP-I to 2D-quantum gravity. So in sending the ‘map’ the Fig.1
to the proceedings of this meeting on ‘Symmetries in nonlinear mathematical physics’ we
also attach, as the §3 next, the §6 of the Ref. [87] essentially as it was published in the
proceedings of KdV ’95. Little change from the original §6 of [87] is made in this §3 next,
but some errors are corrected1‡ and where there has been back-reference to equations used
in the earlier sections of [87] these equations are now inserted or the situation otherwise
accomodated. The §4 following this §3 then reproduces the complete reference list of [87]
(with some corrections) and so provides the reader with the opportunity, if he so wishes,
to look again at the whole evolution of integrable systems during 1834–1995. The new
references [87], [88] and [89] are added to the reference list in §4 as compared with that of
[87].

In this way the §3 which now follows is self-contained and is, we think, usefully ap-
pended in order to illustrate more completely the role of the symmetries of the KP-I
hierarchy in current theories for the partition functions Z of 2D-quantum gravity coupled
most generally [72] to ‘(p, q)-conformal matter’.

1‡ As published [87] contained many printers errors. These are being rectified in a corrected format to
appear in Acta Applicandae Mathematicae shortly.
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Regretfully we do not have opportunity to elaborate still further here on this remark-
able example of the application of symmetries in nonlinear mathematical physics.

3 KdV and 2-dimensional quantum gravity

In formulating this short summary we have been much influenced by the presentation in
Ref. [67].

In contrast with the partition functions elaborated for example in our [53] we follow
Polyakov [68] and write the partition function Z for 2-dimensional quantum gravity (h̄ =
1)2‡

Z =
∑
p

∫
Dg

∫
DX expS[g,X; p], (8)

S[g,X; p] = −λ1

∫
∑

p

√
g −

(
λ2

2π

) ∫
∑

p

R
√
g −

∫
∑

p

√
ggab∂aX

µ∂bX
µ. (9)

The functional integral
∫ Dg is integration over all possible metrics on the 2- surface

∑
p

of genus p and the summation is over such surfaces;
∫ DX is integration over all mappings

X :
∑

p → RD, where D denotes dimension (these mappings are the string fields) and
R is the scalar curvature of the metric g. The constants λ1, λ2 ∈ R are the cosmological
constant (λ1) and the string coupling (λ2). Pure 2-dimensional quantum gravity then has
the partition function

Z =
∑
p

∫
Dg expS[g; p], (10)

S[g; p] = −λ1

∫
∑

p

√
g −

(
λ2

2π

) ∫
∑

p

R
√

g. (11)

A problem now is to make sense of these two heuristically motivated functional in-
tegrals: a route has been [50, 69] to consider the triangulations of 2 surfaces and more
generally [67] the covering of surfaces by squares, hexagons, etc. A calculation of the
number of ways of doing this for each genus p can be used to approximate Z, eqns. (8),
(9). This approximation is shown to be valid for each genus p for special values of the
dimension D namely for

D = 1 − 6[m(m + 1)]−1, m = 2, 3, ... . (12)

Experts may recognize in formula eqn. (12) one of the two conditions, this one on the
central charge usually called c but here called D, that there must be for there to be a
unitary representation of a Virasoro algebra [70]. The particular case m = 2 (D = 0) is the
case of pure quantum gravity eqns. (10), (11). More generally one finds the representation
for Z eqns. (8), (9) which is of the form [67]

Z =
∞∑

p=0

∫
Zp(A)dA �

∞∑
p=0

n2−2p
∞∑

q=0

(−λ)qW{x}(p; q) (13)

2‡We follow convention and omit the surface elements in the surface integrals.
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with3‡

λ → λc, n → ∞; n(λ− λc)−γ = 0(1), (14)

and γ = −1− (2m)−1 (so that γ = −5
4 for pure gravity D = 0). But this cannot define the

functional integral eqns. (8), (9) for Z since the right side only has meaning asymptotically.
However, from the known asymptotic behaviour of W{x}(p; q) as q → ∞ one deduces

Z ≡ Z(t) =
∞∑

p=0

t2−2pbpΓ(γ(2− 2p)) + reg. terms, (15)

where bp {x}, γ {x} for special choices of m − 2 of the parameters4‡ x such that γ =
−1 − (2m)−1 (see above) help to determine the asymptotics of W{x}(p, q): parameters t
in eqn. (16) are given by

t = n

(
1 − λ

λc

)−γ

(16)

and are renormalised string couplings with ‘critical behaviours’ as λ → λc.
The asymptotic series eqn. (15) defines the perturbative theory for Z eqns. (8),(9).

This series does not depend on the parameters {x} mentioned‡ but only on the integer
m which determines D, eqn. (12) (and so determines an mth universality class). For a
non-perturbative definition of the functional integral eqns. (8), (9) one needs a generating
function for eqn. (13) and a candidate is

 n Zn

(
1
2
,
λ

4n
x2,

λ2

6n2
x3, ...,

λN−1

2NnN−1
xN

)
(17)

where Zn(t1, t2, ..., tN ) is the partition function of the hermitian matrix model

Zn =
∫

dΦexp {−TrU(Φ)} ,

U(z)) =
N∑

j=1

tjz
2j . (18)

In this, Φ is an n× n hermitian matrix and

dΦ =
n∏

i=1

dΦii

∏
i<j

dΦijdΦ̄ij (19)

so that Zn is a well defined finite dimensional integral. Of course this is a discretization for
n < ∞ of the functional integral Z, and the matrix model eqn. (18) becomes non-trivial
because one finds [67] that the dimension n of the integral, eqn. (18), is n → ∞ within a
certain double scaling limit which is the limit eqn. (21). First we rescale as

Φ → β
1
2 Φ,

λβ

n
= 1, xj/2j = qj (20)

3‡For each p, λ ≡ −e−λ1ε and λ1 renormalises as λ1 = cε−1 + λ0
1 with ε → 0: λc as used in eqns.

(14),(16) is thus λc = −e−c.
4‡The parameters {x} play a purely auxillary role.
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(so the action U(Φ) gains a factor β). Then the problem is to evaluate  n Zn(1
2β, βq2, ...

..., βqN ) under the limit

β = C1h
−4−2m−1

, nβ−1 = C2 + C−1
1 h4ξ, h → 0 (21)

in which

C2 ≡ λc, λ− λc ≡ C−1
1 h4ξ, ξ ≡ −t2m(2m+1)−1(C1λc)(2m+1)−1

. (22)

The equivalence between Z eqns. (8), (9) and matrix models eqn. (18) in this double
scaling limit has sparked many papers which simply start from a matrix model per se (e.g.
Refs. [49, 50], [71–73]). One can reduce the (finite dimensional) matrix model eqn. (18)
to the expression [49, 67]

Zn = const
n∏

i=1

hi−1(t1, ..., tN ) (23)

where the hn are normalisation constants of corresponding orthogonal polynomials Pn(z)
of degree n with leading coefficient unity taken against the weighting function exp−U(z) :

hnδnm =
∞∫

−∞
Pn(z)Pm(z) exp−

N∑
j=1

tjz
2j . These hn allow the introduction of wn = 4hn/

/hn−1, n = 1, 2, ..., and these wn satisfy a difference equation called the ‘discrete string
equation’ studied in Ref. [67]. This system is an integrable system which is compatible
with the integrable so-called Volterra hierarachy [67, 74].

For our purposes the connection now is that with

β = C1h
−5, nβ−1 = C2 + C−1

1 h4ξ,

wn ∼ ρ(1 − 2h2u(ξ)), h → 0, (24)

which incorporates the limit eqn. (21) for the case m = 2, then, for an appropriate choice
of the constants C1, C2, ρ, u(ξ) satisfies the Painlevé I equation in the form

uξξ = 6u2 + ξ. (25)

More generally, that is for general m, the discrete string equation must be taken under
the limit eqn. (21), and if wn � ρ(1 − 2h4m−1

u(ξ)) then ρ can be chosen so that, after
rescaling to eqn. (28) below (under which ξ → t)

CkRk[u(t)] = t; Ck =
[
2Γ

(
1
2

)
Γ(k + 1)/Γ

(
k +

1
2

)]
(−1)k+1 (26)

where Rk−1[u(t)] = −
(
k − 1

2

)−1
δRk[u(t)]/δu and (see eqn. (57) of [87]) defines the kth

stationary KdV flow Rk−1[u] = 0 [87]. The Rk[u] are introduced in [87] as coefficients of
the resolvent of the Schrödinger operation eigenvalue equation just as this was done in
Ref. [46].

In more detail Gross and Migdal [49] start from the matrix model

Zn(β) =
∫

dΦexp[−βTrU(Φ)] (27)
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(which scales in the β) and see that

 nZn(β) = reg. terms − F (t) (28)

in which, now, t = (β − n)β−(2k+1)−1
(compare eqn. (16)). Then the ‘specific heat’ is

f(t) = F̈ (t) and for the kth ‘multicritical point’ this is given by the eqns. (29) which are:

k = 1 : t = f ; k = 2 : t = f2 − 1
3
f ′′;

k = 3 : t = f3 − ff ′′ − 1
2
(f ′)2 +

1
30

f ′′′′;

k = 4 : t = f4 − 2f(f ′)2 − 2f2f ′′ +
3
5
(f ′′)2 +

4
5
(f ′f ′′) +

2
5
ff ′′′′ − 1

35
f ′′′′′′;

k = 5 : ....... . (29)

Eqns. (29) appear as eqns. (60) and (96) in [87] and they can be put in the form of eqn.
(61) of [87]which is

[L̂n, Âk+1] = 1 (30)

where L̂n = −d2/dξ2 + u(ξ), the Schrödinger operator, while Âk+1 is the A-operator
forming the Lax pair for the k + 1th KdV equation. Then Painlevé I, eqn. (25) is k = 1
which means uξξξ − 12uuξ = 1 and corresponds to the KdV equation with that scaling.

These rather remarkable results place the KdV hierarchy in an exceptional position
vis-a-vis quantum gravity. It seems natural to look for the origin of this exceptional
position in the conformal invariance of the KdV hierarchy. This raises questions about
the representations of the Virasoro algebra in relation to 2-dimensional quantum gravity.
A preferred candidate might have been the covariant Liouville equation

uxx − utt = eαu (31)

which is conformally invariant and plays a fundamental role already in string theory [75].
Conformally invariant field theories induce representations of two identical copies of

the Virasoro algebra

[Ln, Lm] = (m− n)Lm+n +
1
12

cm(m2 − 1)δm,−n (32)

with m,n ∈ Z and c the central charge. With c identified as the dimension D at eqn. (12),
we have already seen one (apparent) connection with the Virasoro algebra for which 0 ≤
c < 1: we sketch next an alternative theory of 2-dimensional quantum gravity where this
algebra becomes immediately evident with however c = 1.5‡ We refer now predominantly
to the exposition by Fukuma, Kawai and Nakayama [72].

By starting from the one matrix φ4-model which has action S scaled to S = nTrU(φ)
with φ an n × n Hermitian matrix and U(z) = 1

2z
2 − 1

4λz
4, as is already contained with

the different scaling in eqn. (18), these authors find Schwinger–Dyson equations for the
partition function Z = lim

n→∞Zn taken in a continuum limit involving a = n− 2
5 → 0, an

analogue of the limit eqns. (24). We shall now use n for the integers n = −1, 0, 1, 2, ....

5‡The meanings of these different choices for the central charge c, which include c = 0 (see §2), remain
obscure to us at present.
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following the notation of Ref. [72] (N is used for our dimension n in the Ref. [72]). The
authors find there is a tau-function (τ -function) τ related to Z as τ2 = Z. This τ -function
satisfies, for the integers n = −1, 0, 1, 2, ....

Lnτ = 0,

2Ln =
1
2

∑
p+q=−2n

pqxpxq +
∑

p−q=2n

pxp
∂

∂q
+

1
2

∑
p+q=2n

∂p∂q +
1
8
δn, 0. (33)

The p, q run over positive odd integers and the Ln satisfy a Virasoro algebra, eqn. (32)
with c = 1.

The authors of Ref. [72] conjecture, but virtually prove by explicit calculation, that
τ satisfying eqns. (33) is actually a τ -function [76] of the KdV hierarchy satisfying in
addition the equation

L−1τ = 0. (34)

The conjectured equivalence of the two statements that Lnτ = 0, eqns. (33), and that τ
is a τ -function of the KdV hierarchy6‡ is strongly supported by the explicit calculation
which reaches

x1 + (3x3∂
2
1 nτ + 5x5∂1∂3 nτ + ...) = 0 (35)

(eqn. (3.6) of Ref. [72]) for the equation L−1τ = 0 differentiated once with respect to
x1. The many variables x1, x3, x5, ... arise in the following way. It is necessary to go to
the KP hierarchy [76] of which the first member is (up to scaling) the KP-I equation in
(2+1)-dimensions, eqn. (4) above. The KP-I hierarchy has a τ -function [76] and τ satisfies
[72,76]

∂1∂m nτ = (Lm)−1, (36)

where L is the pseudo-differential operator L = ∂ +u2∂
−1 + ..., essentially the square root

R̂ of −L̂u, L̂u ≡ −∂2

∂x2 + u(x), the Schrödinger operator introduced in §4 of [87], and ∂ is

∂x1 ≡ ∂1, while ( )−1 stands for the coefficient of ∂−1. The KP-I equations in (2 + 1)-
dimensions contain by reduction many of the integrable systems in (1+1)-dimensions [76],
and in particular the condition of ‘two- reduction’7‡ which is (L2)− = 0, where ( )−
stands for the negative-powers-in-∂-part, restricts to the variables x1, x3, x5.... and yields

(L2k−1)−1 = 2Rk[−2u2], k ≥ 1 (37)

where Rk is again the coefficient Rk of the resolvent of the Schrödinger operator eigenvalue
equation L̂uφ = −λφ, and determines both the stationary KdV flows Rk−1[u] = 0 and the
eqns. (29). By combining eqns. (35), (36) and (37) the authors of Ref. [72] then reach

1
2
x1 +

∞∑
k=1

(2k + 1)x2k+1Rk[−2u2] = 0 (38)

6‡The τ -function as described in Ref. [76] can be traced to the work of Hirota [77] and ultimately to his
solution of the KdV equation [78]. Caudrey et al. [79, 80] gave the comparable solution of the sine-Gordon
equation soon after.

7‡The case of 2-reduction is thought of as pure quantum gravity but includes all of the multicritical
points of Refs. [49,50]: more generally gravity is coupled to “(p, q) conformal matter” [72, 81, 82].



SYMMETRIES OF THE CLASSICAL INTEGRABLE SYSTEMS 255

from which one picks off eqns. (29), up to scaling, by setting all but one of the x2k+1 to
zero (Rk[−2u2] depends only on the variable x1). Thus, recalling the differentiation with
respect to x1, the equation L−1τ = 0 is a once integrated version of eqn. (38) under the
assumption that τ is a τ -function of the KdV hierarchy. From this the other equations
Lnτ = 0 (n ≥ 0) should follow from L−1τ = 0; and as an immediate check, with all x’s
zero except x1, x5, eqn. (38) is of course the Painlevé I equation f2 + 1

3∂
2
1f = x1 for

f = 2∂2
1 nτ = 2u2. Then using this and eqn. (36) one finds [72] that L0τ = 0, L1τ = 0,

at least.
From this result one can guess (as in Ref. [72]) that the “3-reduction” of the KP-

hierarchy (L3)− = 0, which will produce the Boussinesq hierarchy whose first member, up
to scaling is [87]

utt = uxx +
[
3
2
u2 + uxx

]
xx

, (39)

is equivalent to the Schwinger-Dyson equations

Lnτ = 0

3Ln =
1
2

∑
p+q=−3n

pqxpxq +
∑
p

pxp∂p+3n +
1
2

∑
p+q=3n

∂p∂q +
1
3
δn,0, (40)

and the Ln again satisfy the Virasoro algebra eqns. (32) with c = 1.
A new feature is that τ is not now uniquely determined by eqns. (40). Much as in

§2 the authors of Ref. [72] therefore add a large set of further equations which form a
representation of the W -algebra [72, 81, 82]. The explicit expression for Wn chosen in Ref.
[72] is

3
3
2Wn =

∑
p+q+r=−3n

pqrxpxqxr + 3
∑

p+q−r=−3n

pqxpxq∂r +

3
∑

p−q−r=−3n

pxp∂q∂r +
∑

−p−q−r=−3n

∂p∂q∂r (41)

where p, q, r run over positive integers �≡ 0 (mod. 3). And the total algebra becomes

[Ln, Lm] = (m− n)Lm+n + 1
12m(m2 − 1)δm,−n,

[Ln,Wm] = (2n−m)Wn+m,
[Wn,Wm] = − 1

10δn+m,0n(n2 − 1)(n2 − 4)+
(n−m)

[
3
2(n

2 + 4nm + m2) + 27
2 (n + m) + 21

]
Ln+m−

9(n−m)Un+m,
and Un = Σk≤−2LkLn−k + Σk≥−1Ln−1Lk.

(42)

It is worthwhile comparing this W algebra with the W∞ algebra of eqns. (5) and with
the corresponding expressions in the W1+∞ algebra of eqns. (7) for which the correspon-
dences do not seem to be complete. Still the equations

Lnτ = 0 , n = −1, 0, 1, ...,
Wnτ = 0 , n = −2,−1, 0, ... (43)
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prove to form a closed and consistent set, and it is conjectured, in analogy with the case
of 2- reduction and the KdV hierarchy, that an equivalent statement to τ is a τ -function
of the KdV hierarchy with L−1τ = 0 is now τ is a τ -function of the Boussinesq hierarchy
together with, in formal terms, the same additional condition

L−τ = 0. (44)

As described already in §2, by adjoining a representation of the U(1) Kac-Moody Lie
algebra, the whole problem has been transformed to the flows eqns. (6) with the W1+∞
algebra eqns. (7) for the Cn,m. These results explain the connections between the ‘boxes’
marked on the ‘map’, the Fig. 1, with contents the expressions (1), (2) and (3) of §2
(Note that for compactness the W∞ algebra eqns. (5) is actually shown in the expressions
(2) not the W1+∞ algebra (7), while the τ -function is actually [72] the square root of the
partition function in the expressions (3)).

In this way we can see the fundamental importance of the symmetries of the KP-I hier-
archy, together with their generalisations to the larger algebras arising through constraints,
to the theory of 2-dimensional quantum gravity coupled to (p, q) conformal matter. As
noted in Ref. [72] the general framework is by no means complete. We have tried to make
this plain also in this present sketch, taken from Ref. [87]. For, to our understanding, a
total unification in all of its detail of the different approaches in Refs. [81, 82], in [83], and
in [72], and indeed in [67], is still to be achieved.

We mention finally that the Ref. [87] from which this §3 is drawn was concerned first
of all with the KdV equation and its hierarchy in 1+ 1 dimensions. The reader is referred
to the end of the §6 of [87] for the further remarks on this topic. In essence these express
the amazement of the two authors that J.S. Russell’s work [2,3] of 1840 and 1844, as well
as the work of KdV [1] of 1895, all on water waves in canals of finite depth, could ever lead
to, among other things such as the optical solitons [86–88]8‡ mentioned in §1, the results
on 2-dimensional quantum gravity as they have been very incompletely sketched in the
§§2 and 3 of this short paper.
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