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Abstract

New exact solutions are obtained for the systems of classical electrodynamics equa-
tions.

Motion of a classical spinless particle moving in electromagnetic field is described by the
system of ordinary differential equations (Lorentz) and of partial differential equations
(Maxwell) [1]

d
muy, = eFu”, Uy =Ty = %, (1)
T
where F,, = %% — %% is the tensor of electromagnetic field
0,0" A, — 0" (0,AL) =y, Ju = euy, (2)
uyut =1, (3)

A, is the potential of electromagnetic field. Some exact solutions of system (1) ,(2) are
found in [2].

In the present paper using symmetry properties of (1),(2), we have obtained new classes
of exact solutions of the Lorentz-Maxwell system.

1. We choose the electromagnetic potential A, as follows:

Ag=p(w)0 +o(w)f™t, A = Aj(w), A= As(w),

(4)
Az =p(w)d — (W)™, O =x0+1z3, w=mx1—alnlf],

where p, 0, A1, Ao are arbitrary smooth enough functions depending on the variable w only.
The Lagrangian L of equation (1)

m
L= 53':#56“ +eitA, (5)
for the field (4) is invariant under the three-dimensional Lie algebra having the basis
elements
< 2003 + x300 + a0, 09 — 03,02 > . (6)

It follows from the Noether theorem that the functions
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mug + eAs + mug + eAy = Ch, —mug — eAy = Co,

xo (—mus — eAs) + x3 (mug + Ao) + o (—mu; — eA;) = Cs,

(7)

where C7,Cy,Cs are arbitrary constants, are integrals of motion of equation (1) for the

field (4).
Equations (2) for the field (4) are of the form

eug = —p"0+ 071 {—a" + (20" — 2ap" + A])},
euy = 2(p' — ap”), eug = —AY,
eus = —p"0 + 07 {—0" + a(2p — 2ap" + A))}.
Using the motion integral (7), we rewrite system (8) as follows:
A =" —eAy=Cy, p'—ep=0, C1=0,

(@A) — o))"t —e(ady —0) = Ca.

By direct verification one can become convinced of the fact that the functions
o= _e_ __e ,\_GC3
aAl —o aoexp{\/mw}+boexp{ \/mw} e
_ e e
p = aj exp {\/mw} + by exp {—mw} ,
&)

As = agexp {\/cﬁw} + by exp {—\/c%w} - =

satisfy system (9).

As the vector u, satisfy relation (3) we should impose an additional condition on the

functions p, o, A1, As
49" (0" — aAl) + 4,0"2042 — 4/)’2 — A’Q'Q = é2.
Substituting expressions (10) into (11), we get the relations for constants a;, b;
4arag + 4(a® —m)a3 — a3 =0, a1b; #0,
4b1bg + 4(a? — m)b? — b2 = 0,
2
4a1b0 + 4b1a0 + 8@11)1((12 + m) — 2b2a2 = %
To construct solutions of equation (1), (4), we make the change of variables
Yo =20+ T3, Y1 =x1—aln|rg+z3], y2 =22, y3=z0— 3.

Then the motion equations take the form

dy(_) 2p”y0 dyl 2 / dy2 AH
dr "o u3 e  dr e’ dr "2 62 ’
d 2 A 2 9

6%3 €Yo { 5 /1/ ( ! / ! ”)} ’

(1)

(13)

(14)
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Solutions of (14) are given by the quadratures

Asdys
2p'

d
55 =%+, y():%, yo=—/

2p/ + Cﬁ?

(15)
Y3 = Clj {=0o" + aA| + a(2p — 2ap")} + Cs,

where Cy, Cy, C5, Cg are integration constants.
Thus, exact solutions of system (1), (2) are given by formulae (4), (10), (12), (15).

2. To construct another class of exact solutions of equations (1), (2), we choose the
electromagnetic potential as follows:

Ag = o(w)f + 07 {P(w)b1 + o(w)b] + p(w)},

Ap =20(w)b1 +¥(w), Az = Az(w),

Az = o(w)f + 07 {P(w)b1 + o(w)b] — p(w)},
=x9+x3, =21 —Fnlf], w=mzy—alnld,

where 0,1, p, Ao are arbitrary functions on w.
With such a choice of the electromagnetic potential, Lagrangian (5) is invariant with
respect to the algebra

< (w0 +23)01 +21(00 — 03), 7003 + w300 + 301 + adz, 0o — I3 >
and, consequently, equations (1) admit three integrals of motion
(xo + x3)(—muy — eAy) + x1(mug + eAg + mus + eAs) = C,

mug + eAg + mus + eAsz = Cs,

xo(—musz — eAs) + z3(mug + eAp) + S(—mu; — eAq)+ i
a(—mug — eAy) = Co.
Substituting (16) into (2), we find the four—vector u;
eup = —0"0 + 071 {401 + [—¢" — 20 + (A} + 40’ — 2a0")] — 030"},
eu; = —20"01 — ", eus = 40’ — 2a0”, (18)

eus = —0"0 — 07 {01 + [—¢" — 20 + a(Af + 40’ — 2a0")] — 035"} .

Normalizing 4-vector u, according to (3), we arrive at the following condition for the
functions o, ¥, @, Ao :

"2

40" (" — aAl) + 80" 0 + 8a*d"" — W —160"% = e2. (19)

Compatibility of equations (17), (18) is ensured by the following conditions:

2

2
UII_%U:(L ’(/}//_emw:(h 01:07 02:07

2
(o — ads) — & (p— ady) = Cs &
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General solutions of equations (20) read
_ e _ e
a—aoexp{\/mw}—i—boexp{ \/ﬁw},
_ e _ e
v =ay exp{mw}—i—bl exp{ \/mw}, (21)
0 — Ay =asexpl —S—wp +byexpq ———wp — G
vm vm e
where a;, b; are arbitrary constants.
To satisfy equation (19), constants a;, b; have to obey the conditions
4 (aoag + 20% <a2 — %)) — a% =0,
2(.2_m\) _p2 _
4 (boba + 263 (@ 62)) b2 =0, (22)
2 2 2 2
4%(@0[)2 + boaz) + 16agbg (% + 6moé > — 2#@1191 =1.
In the curvilinear coordinate system
x
Yo = xo + X3, Y1 = 71, Y2 = T2 — aln|zg + 73], Y3 = 10 — T3
o + X3
equations of motion of a particle take a form
dyo _ _20"yo dyr _ 20”8 yo| =" dys _ 40’
dr — € > dr €Yo odr T e’
d
% = y% {=¢" [y1y0 — BIn|yol] + (23)

(—p — 20 + (A + 40’ — 2a0")) — (y1yo — Bln|yo|)20”} .

Solutions of equations (23) are given by quadratures

f% =T +Co, yo=Cu(c")Y2,

{20”ﬁ In {04(0’)_1/2} — 1/1"} dys
404(0/)—1/2
ys = f{_wﬂ [(K + 05)04(0./)—1/2 ~ BIn ’04(01)—1/2‘} +

(—¢" — 20 4+ a(Ay + 40’ — 2a0")) —

3/1=f

+ Cs = K(y2) + Cs,

a” [(K + C5)Cy(0")"1/2 = BIn ](3’4((;/)1/2@2} _dyp 1 G

204(0_/)—1/2

Thus, exact solutions of equations (1), (2) are given by formulae (16), (2
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