On Exact Solutions of the Lorentz-Maxwell Equations

Igor REVENKO

Institute of Mathematics of the National Ukrainian Academy of Sciences, 3 Tereshchenkivs'ka Street, Kyiv 4, Ukraina

Abstract

New exact solutions are obtained for the systems of classical electrodynamics equations.

Motion of a classical spinless particle moving in electromagnetic field is described by the system of ordinary differential equations (Lorentz) and of partial differential equations (Maxwell) [1]

$$mu_{\mu} = eF_{\mu\nu}u^{\nu}, \qquad u_{\mu} \equiv \dot{x}_{\mu} = \frac{dx_{\mu}}{d\tau},$$
 (1)

where $F_{\mu\nu} = \frac{\partial A_{\nu}}{\partial x^{\mu}} - \frac{\partial A_{\mu}}{\partial x^{\nu}}$ is the tensor of electromagnetic field

$$\partial_{\nu}\partial^{\nu}A_{\mu} - \partial^{\mu}(\partial_{\nu}A_{\nu}) = j_{\mu}, \qquad j_{\mu} = eu_{\mu}, \tag{2}$$

$$u_{\mu}u^{\mu} = 1, \tag{3}$$

 A_{μ} is the potential of electromagnetic field. Some exact solutions of system (1) ,(2) are found in [2].

In the present paper using symmetry properties of (1),(2), we have obtained new classes of exact solutions of the Lorentz-Maxwell system.

1. We choose the electromagnetic potential A_{μ} as follows:

$$A_0 = \rho(\omega)\theta + \sigma(\omega)\theta^{-1}, \quad A_1 = A_1(\omega), \quad A_2 = A_2(\omega),$$

$$A_3 = \rho(\omega)\theta - \sigma(\omega)\theta^{-1}, \quad \theta = x_0 + x_3, \quad \omega = x_1 - \alpha \ln|\theta|,$$
(4)

where ρ , σ , A_1 , A_2 are arbitrary smooth enough functions depending on the variable ω only. The Lagrangian L of equation (1)

$$L = \frac{m}{2}\dot{x}_{\mu}\dot{x}^{\mu} + e\dot{x}^{\mu}A_{\mu} \tag{5}$$

for the field (4) is invariant under the three-dimensional Lie algebra having the basis elements

$$\langle x_0 \partial_3 + x_3 \partial_0 + \alpha \partial_1, \partial_0 - \partial_3, \partial_2 \rangle. \tag{6}$$

It follows from the Noether theorem that the functions

Copyright © 1996 by Mathematical Ukraina Publisher. All rights of reproduction in any form reserved. 418 I. REVENKO

$$mu_3 + eA_3 + mu_0 + eA_0 = C_1, -mu_2 - eA_2 = C_2,$$

 $x_0 (-mu_3 - eA_3) + x_3 (mu_0 + A_0) + \alpha (-mu_1 - eA_1) = C_3,$

$$(7)$$

where C_1, C_2, C_3 are arbitrary constants, are integrals of motion of equation (1) for the field (4).

Equations (2) for the field (4) are of the form

$$eu_{0} = -\rho''\theta + \theta^{-1} \left\{ -\sigma'' + \alpha(2\rho' - 2\alpha\rho'' + A_{1}'') \right\},$$

$$eu_{1} = 2(\rho' - \alpha\rho''), \qquad eu_{2} = -A_{2}'',$$

$$eu_{3} = -\rho''\theta + \theta^{-1} \left\{ -\sigma'' + \alpha(2\rho' - 2\alpha\rho'' + A_{1}'') \right\}.$$
(8)

Using the motion integral (7), we rewrite system (8) as follows:

$$A_2'' = \frac{m}{e} - eA_2 = C_2, \quad \rho'' \frac{m}{e} - e\rho = 0, \quad C_1 = 0,$$

$$(\alpha A_1 - \sigma)'' \frac{m}{e} - e(\alpha A_1 - \sigma) = C_3.$$
(9)

By direct verification one can become convinced of the fact that the functions

$$\alpha A_1 - \sigma = a_0 \exp\left\{\frac{e}{\sqrt{m}}\omega\right\} + b_0 \exp\left\{-\frac{e}{\sqrt{m}}\omega\right\} - \frac{C_3}{e},$$

$$\rho = a_1 \exp\left\{\frac{e}{\sqrt{m}}\omega\right\} + b_1 \exp\left\{-\frac{e}{\sqrt{m}}\omega\right\},$$

$$A_2 = a_2 \exp\left\{\frac{e}{\sqrt{m}}\omega\right\} + b_2 \exp\left\{-\frac{e}{\sqrt{m}}\omega\right\} - \frac{C_2}{e}$$
(10)

satisfy system (9).

As the vector u_{μ} satisfy relation (3) we should impose an additional condition on the functions ρ, σ, A_1, A_2

$$4\rho''(\sigma'' - \alpha A_1'') + 4\rho''^2\alpha^2 - 4\rho'^2 - A_2''^2 = e^2.$$
(11)

Substituting expressions (10) into (11), we get the relations for constants a_i, b_i

$$4a_{1}a_{0} + 4(\alpha^{2} - m)a_{1}^{2} - a_{2}^{2} = 0, \quad a_{1}b_{1} \neq 0,$$

$$4b_{1}b_{0} + 4(\alpha^{2} - m)b_{1}^{2} - b_{2}^{2} = 0,$$

$$4a_{1}b_{0} + 4b_{1}a_{0} + 8a_{1}b_{1}(\alpha^{2} + m) - 2b_{2}a_{2} = \frac{m^{2}}{e^{2}}.$$

$$(12)$$

To construct solutions of equation (1), (4), we make the change of variables

$$y_0 = x_0 + x_3, \quad y_1 = x_1 - \alpha \ln|x_0 + x_3|, \quad y_2 = x_2, \quad y_3 = x_0 - x_3.$$
 (13)

Then the motion equations take the form

$$\frac{dy_0}{d\tau} = u_0 + u_3 = -\frac{2\rho''y_0}{e}, \quad \frac{dy_1}{d\tau} = \frac{2\rho'}{e}, \quad \frac{dy_2}{d\tau} = u_2 = -\frac{A_2''}{e},
\frac{dy_3}{d\tau} = \frac{2}{ey_0} \left\{ -\sigma'' + \alpha A_1'' + \alpha (2\rho' - 2\alpha\rho'') \right\}.$$
(14)

Solutions of (14) are given by the quadratures

$$\int \frac{dy_1}{2\rho'} = \frac{\tau}{e} + C_0, \qquad y_0 = \frac{C_4}{\rho'}, \quad y_2 = -\int \frac{A_2'' dy_1}{2\rho'} + C_6,
y_3 = \frac{1}{C_4} \left\{ -\sigma' + \alpha A_1' + \alpha (2\rho - 2\alpha \rho') \right\} + C_5,$$
(15)

where C_0, C_4, C_5, C_6 are integration constants.

Thus, exact solutions of system (1), (2) are given by formulae (4), (10), (12), (15).

2. To construct another class of exact solutions of equations (1), (2), we choose the electromagnetic potential as follows:

$$A_{0} = \sigma(\omega)\theta + \theta^{-1} \left\{ \psi(\omega)\theta_{1} + \sigma(\omega)\theta_{1}^{2} + \varphi(\omega) \right\},$$

$$A_{1} = 2\sigma(\omega)\theta_{1} + \psi(\omega), \quad A_{2} = A_{2}(\omega),$$

$$A_{3} = \sigma(\omega)\theta + \theta^{-1} \left\{ \psi(\omega)\theta_{1} + \sigma(\omega)\theta_{1}^{2} - \varphi(\omega) \right\},$$

$$\theta = x_{0} + x_{3}, \quad \theta_{1} = x_{1} - \beta \ln |\theta|, \quad \omega = x_{2} - \alpha \ln |\theta|,$$

$$(16)$$

where $\sigma, \psi, \varphi, A_2$ are arbitrary functions on ω .

With such a choice of the electromagnetic potential, Lagrangian (5) is invariant with respect to the algebra

$$<(x_0+x_3)\partial_1+x_1(\partial_0-\partial_3), x_0\partial_3+x_3\partial_0+\beta\partial_1+\alpha\partial_2, \partial_0-\partial_3>$$

and, consequently, equations (1) admit three integrals of motion

$$(x_0 + x_3)(-mu_1 - eA_1) + x_1(mu_0 + eA_0 + mu_3 + eA_3) = C_1,$$

$$mu_0 + eA_0 + mu_3 + eA_3 = C_3,$$

$$x_0(-mu_3 - eA_3) + x_3(mu_0 + eA_0) + \beta(-mu_1 - eA_1) +$$

$$\alpha(-mu_2 - eA_2) = C_2.$$
(17)

Substituting (16) into (2), we find the four-vector u_i

$$eu_{0} = -\sigma''\theta + \theta^{-1} \left\{ \psi''\theta_{1} + \left[-\varphi'' - 2\sigma + \alpha(A_{2}'' + 4\sigma' - 2\alpha\sigma'') \right] - \theta_{1}^{2}\sigma'' \right\},$$

$$eu_{1} = -2\sigma''\theta_{1} - \psi'', \quad eu_{2} = 4\sigma' - 2\alpha\sigma'',$$

$$eu_{3} = -\sigma''\theta - \theta^{-1} \left\{ -\psi''\theta_{1} + \left[-\varphi'' - 2\sigma + \alpha(A_{2}'' + 4\sigma' - 2\alpha\sigma'') \right] - \theta_{1}^{2}\sigma'' \right\}.$$
(18)

Normalizing 4-vector u_{μ} according to (3), we arrive at the following condition for the functions $\sigma, \psi, \varphi, A_2$:

$$4\sigma''(\varphi'' - \alpha A_2'') + 8\sigma''\sigma + 8\alpha^2 {\sigma''}^2 - {\psi''}^2 - 16{\sigma'}^2 = e^2.$$
(19)

Compatibility of equations (17), (18) is ensured by the following conditions:

$$\sigma'' - \frac{e^2}{m}\sigma = 0, \quad \psi'' - \frac{e^2}{m}\psi = 0, \quad C_1 = 0, \quad C_2 = 0,$$

$$(\varphi - \alpha A_2)'' - \frac{e^2}{m}(\varphi - \alpha A_2) = C_3 \frac{e}{m}.$$
(20)

420 I. REVENKO

General solutions of equations (20) read

$$\sigma = a_0 \exp\left\{\frac{e}{\sqrt{m}}\omega\right\} + b_0 \exp\left\{-\frac{e}{\sqrt{m}}\omega\right\},$$

$$\psi = a_1 \exp\left\{\frac{e}{\sqrt{m}}\omega\right\} + b_1 \exp\left\{-\frac{e}{\sqrt{m}}\omega\right\},$$

$$\varphi - \alpha A_2 = a_2 \exp\left\{\frac{e}{\sqrt{m}}\omega\right\} + b_2 \exp\left\{-\frac{e}{\sqrt{m}}\omega\right\} - \frac{C_3}{e}$$
(21)

where a_i , b_i are arbitrary constants.

To satisfy equation (19), constants a_i , b_i have to obey the conditions

$$4\left(a_0a_2 + 2a_0^2\left(\alpha^2 - \frac{m}{e^2}\right)\right) - a_1^2 = 0,$$

$$4\left(b_0b_2 + 2b_0^2\left(\alpha^2 - \frac{m}{e^2}\right)\right) - b_1^2 = 0,$$

$$4\frac{e^2}{m^2}(a_0b_2 + b_0a_2) + 16a_0b_0\left(\frac{3}{m} + \frac{e^2\alpha^2}{m^2}\right) - 2\frac{e^2}{m^2}a_1b_1 = 1.$$
(22)

In the curvilinear coordinate system

$$y_0 = x_0 + x_3, \ y_1 = \frac{x_1}{x_0 + x_3}, \ y_2 = x_2 - \alpha \ln|x_0 + x_3|, \ y_3 = x_0 - x_3$$

equations of motion of a particle take a form

$$\frac{dy_0}{d\tau} = -\frac{2\sigma''y_0}{e}, \quad \frac{dy_1}{d\tau} = \frac{2\sigma''\beta \ln|y_0| - \psi''}{ey_0}, \quad \frac{dy_2}{d\tau} = \frac{4\sigma'}{e},
\frac{dy_3}{d\tau} = \frac{2}{y_0} \left\{ -\psi'' \left[y_1 y_0 - \beta \ln|y_0| \right] +
\left(-\varphi - 2\sigma + \alpha (A_2'' + 4\sigma' - 2\alpha\sigma'') \right) - \left(y_1 y_0 - \beta \ln|y_0| \right)^2 \sigma'' \right\}.$$
(23)

Solutions of equations (23) are given by quadratures

$$\int \frac{dy_2}{4\sigma'} = \frac{\tau}{e} + C_0, \quad y_0 = C_4(\sigma')^{-1/2},$$

$$y_1 = \int \frac{\left\{2\sigma''\beta \ln\left[C_4(\sigma')^{-1/2}\right] - \psi''\right\} dy_2}{4C_4(\sigma')^{-1/2}} + C_5 = K(y_2) + C_5,$$

$$y_3 = \int \left\{-\psi''\left[(K + C_5)C_4(\sigma')^{-1/2} - \beta \ln|C_4(\sigma')^{-1/2}|\right] + (-\varphi'' - 2\sigma + \alpha(A_2'' + 4\sigma' - 2\alpha\sigma'')) - \sigma''\left[(K + C_5)C_4(\sigma')^{-1/2} - \beta \ln|C_4(\sigma')^{-1/2}|\right]^2\right\} \frac{dy_2}{2C_4(\sigma')^{-1/2}} + C_6.$$

Thus, exact solutions of equations (1), (2) are given by formulae (16), (21), (22), (24).

References

- [1] Meller K., Relativity Theory, Moscow, Atomizdat, 1975, 400p.
- [2] Bagrov V.G., Gitman D.M., Ternov I.M., Shapovalov V.N., Exact Solutions of Relativistic Wave Equations, Novosibirsk, Nauka, 1982, 144p.